1
|
Jafarzadeh A, Motaghi M, Patra SK, Jafarzadeh Z, Nemati M, Saha B. Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications. Cytotherapy 2024; 26:797-805. [PMID: 38625068 DOI: 10.1016/j.jcyt.2024.03.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marzieh Motaghi
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
2
|
Zhan J, Song H, Wang N, Guo C, Shen N, Hua R, Shi Y, Angel C, Gu X, Xie Y, Lai W, Peng X, Yang G. Molecular and Functional Characterization of Inhibitor of Apoptosis Proteins (IAP, BIRP) in Echinococcus granulosus. Front Microbiol 2020; 11:729. [PMID: 32390980 PMCID: PMC7188921 DOI: 10.3389/fmicb.2020.00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The larval stage of Echinococcus granulosus sensu lato, resulting in cystic echinococcosis, a parasitic zoonosis, causes huge economic losses to the livestock industry and poses a threat to public health. Inhibitor of apoptosis proteins (IAPs) is a class of endogenous anti-apoptotic family, which plays a significant functional role in the regulation of organism’s development. Herein, to explore potential functions of IAPs in E. granulosus, two members of IAPs from E. granulosus (Eg-IAP and Eg-BIRP) were cloned, expressed, and molecularly characterized. Eg-IAP and Eg-BIRP encoded putative 331 and 168 residue proteins, respectively. Bioinformatic analysis showed that both proteins contained a type II BIR domain-the essential functional domain of IAPs. Fluorescence immunohistochemistry revealed that both proteins were ubiquitously localized in all life-cycle stages of E. granulosus. Our fluorescent quantitative PCR (RT-qPCR) results revealed relatively higher transcription levels of two Eg-IAPs in protoscoleces (PSCs) compared to the 18-day strobilated worms. We further used different concentrations of LCL161, a Smac-mimetic pan-IAPs inhibitor, to induce the apoptosis in PSCs in vitro, and revealed that the survival rate of PSCs and transcription levels of both genes were negatively correlated with the concentration of LCL161. While the results of light microscopy, transmission electron microscopy (TEM), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay also showed a higher apoptotic rate in PSCs with the increasing concentrations of LCL161. Taken together, our findings provide the reasonable evidence that both Eg-IAP and Eg-BIRP have potential implication in critical anti-apoptotic roles during the development of E. granulosus.
Collapse
Affiliation(s)
- Jiafei Zhan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan Shi
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Futrega K, Atkinson K, Lott WB, Doran MR. Spheroid Coculture of Hematopoietic Stem/Progenitor Cells and Monolayer Expanded Mesenchymal Stem/Stromal Cells in Polydimethylsiloxane Microwells Modestly Improves In Vitro Hematopoietic Stem/Progenitor Cell Expansion. Tissue Eng Part C Methods 2017; 23:200-218. [PMID: 28406754 PMCID: PMC5397247 DOI: 10.1089/ten.tec.2016.0329] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we evaluated the capacity of a novel three-dimensional (3D) coculture system to support HSPC expansion in vitro. A high-throughput polydimethylsiloxane (PDMS) microwell platform was used to manufacture thousands of uniform 3D multicellular coculture spheroids. Relative gene expression in 3D spheroid versus 2D adherent BM-derived MSC cultures was characterized and compared with literature reports. We evaluated coculture spheroids, each containing 25-400 MSCs and 10 umbilical cord blood (CB)-derived CD34+ progenitor cells. At low exogenous cytokine concentrations, 2D and 3D MSC coculture modestly improved overall hematopoietic cell and CD34+ cell expansion outcomes. By contrast, a substantial increase in CD34+CD38- cell yield was observed in PDMS microwell cultures, regardless of the presence or absence of MSCs. This outcome indicated that CD34+CD38- cell culture yield could be increased using the microwell platform alone, even without MSC coculture support. We found that the increase in CD34+CD38- cell yield observed in PDMS microwell cultures did not translate to enhanced engraftment in NOD/SCID gamma (NSG) mice or a modification in the relative human hematopoietic lineages established in engrafted mice. In summary, there was no statistical difference in CD34+ cell yield from 2D or 3D cocultures, and MSC coculture support provided only modest benefit in either geometry. While the high-throughput 3D microwell platform may provide a useful model system for studying cells in coculture, further optimization will be required to generate HSPC yields suitable for use in clinical applications.
Collapse
Affiliation(s)
- Kathryn Futrega
- 1 Stem Cell Therapies Laboratory, Translational Research Institute, Queensland University of Technology , Brisbane, Australia
| | - Kerry Atkinson
- 1 Stem Cell Therapies Laboratory, Translational Research Institute, Queensland University of Technology , Brisbane, Australia
| | - William B Lott
- 1 Stem Cell Therapies Laboratory, Translational Research Institute, Queensland University of Technology , Brisbane, Australia
| | - Michael R Doran
- 1 Stem Cell Therapies Laboratory, Translational Research Institute, Queensland University of Technology , Brisbane, Australia .,2 Mater Research Institute - University of Queensland, Translational Research Institute , Brisbane, Australia
| |
Collapse
|
4
|
Chen L, Xie XY, Nie JQ, Chen DL, Huang AP, Fang F, Qu MY, Nan X, He LJ, Fan Z, Yue W, Pei XT. [Mononuclear cells of umbilical cord blood differentiation to granulocyte cell in vitro]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:532-536. [PMID: 28655099 PMCID: PMC7342961 DOI: 10.3760/cma.j.issn.0253-2727.2017.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/25/2023]
Abstract
Objective: To explore an optimal method for granulocyte cell production from umbilical cord blood mononuclear cells. Methods: Erythrocytes were precipitated by hydroxyethyl starch. Mononuclear cells were isolated through Ficoll density gradient centrifugation. Different media, additives and cultivation model were chosen for granulocyte induction. Cell morphology was observed by microscopy, and cell phenotype was detected by flow cytometry. The CD18 expression of granulocytes was tested by immunofluorescence assay, and phagocytosis test was executed as well. Results: Compared to fetal bovine serum (FBS) treatment group, cell viability, counts and differentiation rate of granulocytes induced by X-VIVO(TM) 15 combined with TPO, SCF, G-CSF but without FBS were superior. And X-VIVO(TM)15 medium was better than SCGM medium at effectiveness and cost. Using two-stage mode of hematopoietic stem cell expansion followed by granulocyte induction with X-VIVO(TM)15 combining TPO, SCF and G-CSF, cell proliferation was nearly 132 times at day 21. Flow cytometry showed that the differentiation was lagged in 2-stage mode than in direct induction mode, CD15 expression was (69.60± 1.06) % vs (97.73±0.39) %; Wright-Giemsa staining demonstrated mature granulocytes; immunofluorescence showed the expression of lysosomal proteins CD18. A strong phagocytic function of mature granulocytes was demonstrated by phagotrophic efficiency of (51.43±0.05) %. And granulocyte had chemotaxis ability under the role of chemotactic factor IL-8. Conclusion: Optimized culture media and cultivation mode are achieved for functional granulocytes induction in vitro.
Collapse
Affiliation(s)
- L Chen
- Stem Cell and Regenerative Medicine lab, Beijing Institute of Transfusion Medicine, South China Research Center for Stem Cell& Regenerative Medicine, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | - X T Pei
- Stem Cell and Regenerative Medicine lab, Beijing Institute of Transfusion Medicine, South China Research Center for Stem Cell& Regenerative Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Lipsitz YY, Timmins NE, Zandstra PW. Quality cell therapy manufacturing by design. Nat Biotechnol 2016; 34:393-400. [DOI: 10.1038/nbt.3525] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2016] [Indexed: 11/09/2022]
|
6
|
Rao X, Zhong J, Sun Q. The heterogenic properties of monocytes/macrophages and neutrophils in inflammatory response in diabetes. Life Sci 2014; 116:59-66. [PMID: 25264371 DOI: 10.1016/j.lfs.2014.09.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 01/03/2023]
Abstract
Inflammation is a complicated biological process in response to harmful stimuli, which involves the cooperation of immune system and vascular system. Upon pathogen invasion or tissue injury, resident innate immune cells such as macrophages and dendritic cells are activated and release inflammatory mediators, which result in the vasodilation and recruitment of leukocytes, mainly monocytes and neutrophils. As two of the most important inflammation-mediating immune cells, macrophages and neutrophils have long been regarded to have a pro-inflammatory effect. However, increasing evidences suggest the role of macrophage and neutrophil in inflammation is more complicated and diversified than we thought. Differently activated macrophages and neutrophils lead to diverse even opposite activities. Precise understanding of the role of different subpopulations is critical to achieve the effective treatment for inflammatory diseases. In this review, we discuss the two potentially distinct activation routes of macrophages and neutrophils in obesity and diabetes.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Jixin Zhong
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Brunck MEG, Nielsen LK. Concise review: next-generation cell therapies to prevent infections in neutropenic patients. Stem Cells Transl Med 2014; 3:541-8. [PMID: 24598780 DOI: 10.5966/sctm.2013-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
High-dose chemotherapy is accompanied by an obligate period of neutropenia. Resulting bacterial and fungal infections are the leading cause of morbidity and mortality in neutropenic patients despite prophylactic antimicrobials and hematopoietic growth factor supplements. Replacing neutrophils in the patient through transfusion of donor cells is a logical solution to prevent fulminant infections. In the past, this strategy has been hampered by poor yield, inability to store collected cells, and possible donor morbidity caused by granulocyte colony-stimulating factor injections and apheresis. Today, neutrophil-like cells can be manufactured in the laboratory at the clinical scale from hematopoietic stem and progenitor cells enriched from umbilical cord blood. This article reviews the rationale for focusing research efforts toward ex vivo neutrophil production and explores clinical settings for future trials.
Collapse
Affiliation(s)
- Marion E G Brunck
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | | |
Collapse
|
8
|
Heinicke LA, Nabet B, Shen S, Jiang P, van Zalen S, Cieply B, Russell JE, Xing Y, Carstens RP. The RNA binding protein RBM38 (RNPC1) regulates splicing during late erythroid differentiation. PLoS One 2013; 8:e78031. [PMID: 24250749 PMCID: PMC3820963 DOI: 10.1371/journal.pone.0078031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/07/2013] [Indexed: 12/11/2022] Open
Abstract
Alternative pre-mRNA splicing is a prevalent mechanism in mammals that promotes proteomic diversity, including expression of cell-type specific protein isoforms. We characterized a role for RBM38 (RNPC1) in regulation of alternative splicing during late erythroid differentiation. We used an Affymetrix human exon junction (HJAY) splicing microarray to identify a panel of RBM38-regulated alternatively spliced transcripts. Using microarray databases, we noted high RBM38 expression levels in CD71+ erythroid cells and thus chose to examine RBM38 expression during erythroid differentiation of human hematopoietic stem cells, detecting enhanced RBM38 expression during late erythroid differentiation. In differentiated erythroid cells, we validated a subset of RBM38-regulated splicing events and determined that RBM38 regulates activation of Protein 4.1R (EPB41) exon 16 during late erythroid differentiation. Using Epb41 minigenes, Rbm38 was found to be a robust activator of exon 16 splicing. To further address the mechanism of RBM38-regulated alternative splicing, a novel mammalian protein expression system, followed by SELEX-Seq, was used to identify a GU-rich RBM38 binding motif. Lastly, using a tethering assay, we determined that RBM38 can directly activate splicing when recruited to a downstream intron. Together, our data support the role of RBM38 in regulating alternative splicing during erythroid differentiation.
Collapse
Affiliation(s)
- Laurie A. Heinicke
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Behnam Nabet
- Department of Medicine (Renal Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shihao Shen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peng Jiang
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sebastiaan van Zalen
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Cieply
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Eric Russell
- Department of Medicine (Hematology-Oncology Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pediatrics (Hematology), Perelman School of Medicine, University of Pennsylvania, and the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Yi Xing
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Russ P. Carstens
- Department of Medicine (Renal Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Bacterial and fungal infections continue to be a major cause of morbidity and mortality in severely neutropenic patients undergoing aggressive chemotherapy regimens or hematopoietic stem cell transplantation. Traditional granulocyte transfusion therapy, a logical approach in treating these infections, has been available for many years, and several controlled studies have shown this therapy to be useful. However, granulocyte transfusion therapy fell out of favor because the results were not clinically impressive, and adverse results were reported. These disappointing results were felt to be, in part, because of the low doses of granulocytes provided. More recent studies have attempted to increase the numbers of transfused cells by stimulating normal granulocyte donors with G-CSF (+/-corticosteroids). With these techniques, the number of granulocytes transfused can be increased 3-4 fold. The cells have been shown to circulate in recipients, and daily transfusions are capable of maintaining normal or near-normal blood neutrophil counts in previously severely neutropenic patients. The cells appear to function normally by a variety of in vitro and in vivo tests. Clinical benefit, as defined by survival or clearance of infection, has not been definitively determined. Results of an ongoing randomized controlled clinical trial should be available in the near future.
Collapse
Affiliation(s)
- Anthony A. Marfin
- Puget Sound Blood Center, Seattle, WA, USA
- Current Address: HIV Prevention Branch, Division of Global HIV/AIDS, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas H. Price
- Puget Sound Blood Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Alternative blood products and clinical needs in transfusion medicine. Stem Cells Int 2012; 2012:639561. [PMID: 22567025 PMCID: PMC3337502 DOI: 10.1155/2012/639561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/30/2011] [Indexed: 01/19/2023] Open
Abstract
The primary focus of national blood programs is the provision of a safe and adequate blood supply. This goal is dependent on regular voluntary donations and a regulatory infrastructure that establishes and enforces standards for blood safety. Progress in ex vivo expansion of blood cells from cell sources including peripheral blood, cord blood, induced pluripotent stem cells, and human embryonic stem cell lines will likely make alternative transfusion products available for clinical use in the near future. Initially, alloimmunized patients and individuals with rare blood types are most likely to benefit from alternative products. However, in developed nations voluntary blood donations are projected to be inadequate in the future as blood usage by individuals 60 years and older increases. In developing nations economic and political challenges may impede progress in attaining self-sufficiency. Under these circumstances, ex vivo generated red cells may be needed to supplement the general blood supply.
Collapse
|
11
|
Abstract
The normal accumulation of β-globin protein in terminally differentiating erythroid cells is critically dependent on the high stability of its encoding mRNA. The molecular basis for this property, though, is incompletely understood. Factors that regulate β-globin mRNA within the nucleus of early erythroid progenitors are unlikely to account for the constitutively high half-life of β-globin mRNA in the cytoplasm of their anucleate erythroid progeny. We conducted in vitro protein-RNA binding analyses that identified a cytoplasm-restricted β-globin messenger ribonucleoprotein (mRNP) complex in both cultured K562 cells and erythroid-differentiated human CD34(+) cells. This novel mRNP targets a specific guanine-rich pentanucleotide in a region of the β-globin 3'untranslated region that has recently been implicated as a determinant of β-globin mRNA stability. Subsequent affinity-enrichment analyses identified AUF-1 and YB-1, 2 cytoplasmic proteins with well-established roles in RNA biology, as trans-acting components of the mRNP. Factor-depletion studies conducted in vivo demonstrated the importance of the mRNP to normal steady-state levels of β-globin mRNA in erythroid precursors. These data define a previously unrecognized mechanism for the posttranscriptional regulation of β-globin mRNA during normal erythropoiesis, providing new therapeutic targets for disorders of β-globin gene expression.
Collapse
|