1
|
Khaseb S, Atashi A, Kaviani S, Rezai Rad M, Ajami M, Ajami M. Expression analysis of genes involved in the expansion of hematopoietic stem cells (SCF, Flt3-L, TPO, IL-3, and IL-6) in unrestricted somatic stem cells cultured on fibrin. Biochimie 2023; 212:135-142. [PMID: 37116684 DOI: 10.1016/j.biochi.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Umbilical cord blood (UCB) transplantation is a promising therapeutic approach for patients lacking HLA-matched donors. A main limitation to the use of UCB-derived HSCs (UCB-HSCs) is the low number of transplantable cells. Novel culture strategies are being developed to increase the number of HSCs. Unrestricted somatic stem cells (USSCs) have been identified as promising stromal cells for supporting HSC expansion. The current study aimed to explore the effect of fibrin on the expression of hematopoiesis-related genes (SCF, Flt3-L, TPO, IL-3, and IL-6) in USSCs. USSCs were isolated from UCB and characterized by flow cytometry and in vitro multilineage differentiation ability. DAPI staining and the MTT assay were used to assess the effect of fibrin on USSC viability. The cell attachment was evaluated using SEM. qRT-PCR was performed to evaluate the expression of SCF, Flt3-L, TPO, IL-3, and IL-6 in USSCs cultured on 3D fibrin scaffolds. USSCs were positive for CD73, CD105, and CD166 and negative for CD45. Alizarin red and Oil red O stains confirmed calcium deposition and lipid vacuoles in USSCs. Results obtained from DAPI and MTT assays revealed a positive effect of fibrin on USSC viability. Cells cultured on fibrin express significantly higher levels of SCF and TPO compared to those grown in a 2D environment. The positive effect of fibrin on IL-6 levels was reversed. Fibrin did not affect Flt3-L expression and IL-3 mRNA expression was not detected in either group. The results of this study provide the basis for developing further research on the ex vivo expansion of HSCs with USSCs.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Saeid Kaviani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Monireh Ajami
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
2
|
Preciado S, Muntión S, Corchete LA, Ramos TL, de la Torre AG, Osugui L, Rico A, Espinosa-Lara N, Gastaca I, Díez-Campelo M, Del Cañizo C, Sánchez-Guijo F. The Incorporation of Extracellular Vesicles from Mesenchymal Stromal Cells Into CD34 + Cells Increases Their Clonogenic Capacity and Bone Marrow Lodging Ability. Stem Cells 2019; 37:1357-1368. [PMID: 31184411 PMCID: PMC6852558 DOI: 10.1002/stem.3032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSC) may exert their functions by the release of extracellular vesicles (EV). Our aim was to analyze changes induced in CD34+ cells after the incorporation of MSC‐EV. MSC‐EV were characterized by flow cytometry (FC), Western blot, electron microscopy, and nanoparticle tracking analysis. EV incorporation into CD34+ cells was confirmed by FC and confocal microscopy, and then reverse transcription polymerase chain reaction and arrays were performed in modified CD34+ cells. Apoptosis and cell cycle were also evaluated by FC, phosphorylation of signal activator of transcription 5 (STAT5) by WES Simple, and clonal growth by clonogenic assays. Human engraftment was analyzed 4 weeks after CD34+ cell transplantation in nonobese diabetic/severe combined immunodeficient mice. Our results showed that MSC‐EV incorporation induced a downregulation of proapoptotic genes, an overexpression of genes involved in colony formation, and an activation of the Janus kinase (JAK)‐STAT pathway in CD34+ cells. A significant decrease in apoptosis and an increased CD44 expression were confirmed by FC, and increased levels of phospho‐STAT5 were confirmed by WES Simple in CD34+ cells with MSC‐EV. In addition, these cells displayed a higher colony‐forming unit granulocyte/macrophage clonogenic potential. Finally, the in vivo bone marrow lodging ability of human CD34+ cells with MSC‐EV was significantly increased in the injected femurs. In summary, the incorporation of MSC‐EV induces genomic and functional changes in CD34+ cells, increasing their clonogenic capacity and their bone marrow lodging ability. stem cells2019;37:1357–1368
Collapse
Affiliation(s)
- Silvia Preciado
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Luis A Corchete
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Teresa L Ramos
- RETIC TerCel, ISCIII, Salamanca, Spain.,Laboratorio de Terapia Celular, Instituto de Biomedicina de Sevilla (IBIS), UGC-Hematología, Hospital Universitario Virgen del Rocío/CSIC/CIBERONC, Sevilla, Spain
| | - Ana G de la Torre
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Lika Osugui
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Ana Rico
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Natalia Espinosa-Lara
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Irene Gastaca
- Servicio de Ginecología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain.,RETIC TerCel, ISCIII, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Liao Y, Ivanova L, Zhu H, Yahr A, Ayello J, van de Ven C, Rashad A, Uitto J, Christiano AM, Cairo MS. Rescue of the mucocutaneous manifestations by human cord blood derived nonhematopoietic stem cells in a mouse model of recessive dystrophic epidermolysis bullosa. Stem Cells 2016; 33:1807-17. [PMID: 25640200 DOI: 10.1002/stem.1966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin blistering disease caused by mutations in COL7A1-encoding type VII collagen (C7). Currently, there is no curative therapy for patients with RDEB. Our previous studies demonstrated that human umbilical cord blood (HUCB) derived unrestricted somatic stem cells (USSCs) express C7 and facilitate wound healing in a murine wounding model. The primary objective of this study is to investigate the therapeutic functions of USSCs in the C7 null (Col7a1(-/-) ) C57BL6/J mice, a murine model of RDEB. We demonstrated that intrahepatic administration of USSCs significantly improved the blistering phenotype and enhanced the life span in the recipients. The injected USSCs trafficked to the sites of blistering and were incorporated in short-term in the recipients' skin and gastrointestinal tract. Consistent with an overall histological improvement in the epidermal-dermal adherence following USSC treatment, the expression of C7 at the basement membrane zone was detected and the previously disorganized integrin α6 distribution was normalized. We also demonstrated that USSCs treatment induced an infiltration of macrophages with a regenerative "M2" phenotype. Our data suggest that HUCB-derived USSCs improved the RDEB phenotype through multiple mechanisms. This study has warranted future clinical investigation of USSCs as a novel and universal allogeneic stem cell donor source in selected patients with RDEB.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Ashlin Yahr
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Ahmed Rashad
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Immunology and Microbiology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Zhang X, Xiang L, Ran Q, Liu Y, Xiang Y, Xiao Y, Chen L, Li F, Zhong JF, Li Z. Crif1 Promotes Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells After Irradiation by Modulating the PKA/CREB Signaling Pathway. Stem Cells 2016; 33:1915-26. [PMID: 25847389 DOI: 10.1002/stem.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/12/2015] [Accepted: 02/28/2015] [Indexed: 12/22/2022]
Abstract
Dysfunction of the hematopoietic microenvironment is the main obstacle encountered during hematopoiesis reconstruction in patients with acute hematopoietic radiation syndrome. Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial supporting role in hematopoiesis by maintaining the balance between adipogenic and osteogenic differentiation. In this study, we found that irradiation decreased the colony-forming efficiency of BM-MSCs and impaired the balance between adipogenic and osteogenic differentiation. Following irradiation, BM-MCSs became strongly predisposed to adipogenesis, as evidenced by increased oil red O staining and elevated mRNA and protein levels of the adipogenic markers and transcription factors PPARγ and AP2. Overexpression of the essential adipogenesis regulator Crif1 in BM-MSCs promoted adipogenesis after irradiation exposure by upregulating adipogenesis-related genes, including C/EBPβ, PPARγ, and AP2. We found that Crif1 promoted the phosphorylation of cAMP response element binding protein (CREB) through direct interaction with protein kinase A (PKA)-α. Phosphorylation of CREB was inhibited in Crif1-knockdown BM-MSCs even in the presence of a PKA agonist (db-cAMP) and could be suppressed in Crif1-overexpressing BM-MSCs by a PKAα inhibitor (H-89). These results suggest that Crif1 is an indispensable regulator of PKAα cat that modulates the PKA/CREB signaling pathway to promote adipogenic differentiation of BM-MSCs after irradiation.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixin Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yao Liu
- Department of Hematology and, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yang Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Li Chen
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fengjie Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang F Zhong
- Department of Pathology, University of Southern California, Keck School of Medicine, California, USA
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Neonatal mesenchymal-like cells adapt to surrounding cells. Stem Cell Res 2013; 11:634-46. [DOI: 10.1016/j.scr.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022] Open
|
6
|
Increased Haematopoietic Supportive Function of USSC from Umbilical Cord Blood Compared to CB MSC and Possible Role of DLK-1. Stem Cells Int 2013; 2013:985285. [PMID: 23690788 PMCID: PMC3649714 DOI: 10.1155/2013/985285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/25/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023] Open
Abstract
Multipotent stromal cells can be isolated from a variety of different tissues in the body. In contrast to stromal cells from the adult bone marrow (BM) or adipose tissue, cord blood (CB) multipotent stromal cells (MSC) are biologically younger. Since first being described by our group, delta like 1 homologue (DLK-1) was determined as a discriminating factor between the distinct cord blood-derived subpopulations: the unrestricted somatic stromal cells (USSC), which lack adipogenic differentiation capacity, and the BM MSC-like CB MSC. In this study, experiments assessing the haematopoiesis-supporting capacity and molecular biological analyses were conducted and clearly confirmed different properties. Compared to CB MSC, USSC lead to a higher expansion of haematopoietic cells and in addition express significantly higher levels of insulin-like growth factor binding protein 1 (IGFBP1), but lower levels of IGF2. The data presented here also indicate that DLK-1 might not be the sole factor responsible for the inhibition of adipogenic differentiation potential in USSC but nevertheless indicates a biological diversity among cord blood-derived stromal cells.
Collapse
|
7
|
Potential application of cord blood-derived stromal cells in cellular therapy and regenerative medicine. JOURNAL OF BLOOD TRANSFUSION 2012; 2012:365182. [PMID: 24066257 PMCID: PMC3771124 DOI: 10.1155/2012/365182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
Neonatal stromal cells from umbilical cord blood (CB) are promising alternatives to bone marrow- (BM-) derived multipotent stromal cells (MSCs). In comparison to BM-MSC, the less mature CB-derived stromal cells have been described as a cell population with higher differentiation and proliferation potential that might be of potential interest for clinical application in regenerative medicine. Recently, it has become clear that cord blood contains different stromal cell populations, and as of today, a clear distinction between unrestricted somatic stromal cells (USSCs) and CB-MSC has been established. This classification is based on the expression of DLK-1, HOX, and CD146, as well as functional examination of the adipogenic differentiation potential and the capacity to support haematopoiesis in vitro and in vivo. However, a marker enabling a prospective isolation of the rare cell populations directly out of cord blood is yet to be found. Further analysis may help to reveal even more subpopulations with different properties, which could be useful for the directed application of these cells in preclinical models.
Collapse
|
8
|
Ribeiro AJS, Tottey S, Taylor RWE, Bise R, Kanade T, Badylak SF, Dahl KN. Mechanical characterization of adult stem cells from bone marrow and perivascular niches. J Biomech 2012; 45:1280-7. [PMID: 22349118 DOI: 10.1016/j.jbiomech.2012.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 01/20/2012] [Accepted: 01/29/2012] [Indexed: 12/11/2022]
Abstract
Therapies using adult stem cells often require mechanical manipulation such as injection or incorporation into scaffolds. However, force-induced rupture and mechanosensitivity of cells during manipulation is largely ignored. Here, we image cell mechanical structures and perform a biophysical characterization of three different types of human adult stem cells: bone marrow CD34+ hematopoietic, bone marrow mesenchymal and perivascular mesenchymal stem cells. We use micropipette aspiration to characterize cell mechanics and quantify deformation of subcellular structures under force and its contribution to global cell deformation. Our results suggest that CD34+ cells are mechanically suitable for injection systems since cells transition from solid- to fluid-like at constant aspiration pressure, probably due to a poorly developed actin cytoskeleton. Conversely, mesenchymal stem cells from the bone marrow and perivascular niches are more suitable for seeding into biomaterial scaffolds since they are mechanically robust and have developed cytoskeletal structures that may allow cellular stable attachment and motility through solid porous environments. Among these, perivascular stem cells cultured in 6% oxygen show a developed cytoskeleton but a more compliant nucleus, which can facilitate the penetration into pores of tissues or scaffolds. We confirm the relevance of our measurements using cell motility and migration assays and measure survival of injected cells. Since different types of adult stem cells can be used for similar applications, we suggest considering mechanical properties of stem cells to match optimal mechanical characteristics of therapies.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburg, PA 15213, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. BONE MARROW RESEARCH 2011; 2011:353878. [PMID: 22046560 PMCID: PMC3196250 DOI: 10.1155/2011/353878] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 12/24/2022]
Abstract
Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.
Collapse
|