1
|
Alam S, Sargeant MS, Patel R, Jayaram P. Exploring Metabolic Mechanisms in Calcific Tendinopathy and Shoulder Arthrofibrosis: Insights and Therapeutic Implications. J Clin Med 2024; 13:6641. [PMID: 39597785 PMCID: PMC11595303 DOI: 10.3390/jcm13226641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Rotator cuff calcific tendinopathy and arthrofibrosis of the shoulder (adhesive capsulitis) are debilitating musculoskeletal disorders that significantly impact joint function and impair quality of life. Despite its high prevalence and common clinical presentation, the metabolic mechanisms underlying these conditions characterized by pain, and reduced mobility, remain poorly understood. This review aims to elucidate the role of metabolic processes implicated in the pathogenesis of calcific tendinopathy and shoulder arthrofibrosis. We will be focusing on the mechanistic role of how these processes contribute to disease progression and can direct potential therapeutic targets. Calcific tendinopathy is marked by aberrant calcium deposition within tendons, influenced by disrupted calcium and phosphate homeostasis, and altered cellular responses. Key molecular pathways, including bone morphogenetic proteins (BMPs), Wnt signaling, and transforming growth factor-beta (TGF-β), play crucial roles in the pathophysiology of calcification, calcium imbalance, and muscle fibrosis. In contrast, shoulder arthrofibrosis involves excessive collagen deposition and fibrosis within the shoulder joint capsule, driven by metabolic dysregulation and inflammation. The TGF-β signaling pathway and inflammatory cytokines, such as interleukin-6 (IL-6), are central to the fibrotic response. A comparative analysis reveals both shared and distinct metabolic pathways between these conditions, highlighting the interplay between inflammation, cellular metabolism, extracellular matrix remodeling, calcific deposition, and calcium migration to the glenohumeral joints, resulting in adhesive capsulitis, thereby providing insights into their pathophysiology. This review discusses current therapeutic approaches and their limitations, advocating for the development of targeted therapies that address specific metabolic dysregulations. Future therapeutic strategies focus on developing targeted interventions that address the underlying metabolic dysregulation, aiming to improve patient outcomes and advance clinical management. This review offers a comprehensive overview of the metabolic mechanisms involved in calcific tendinopathy and shoulder arthrofibrosis, providing a foundation for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Prathap Jayaram
- Department of Orthopedics, Musculoskeletal Institute, School of Medicine, Emory University, Atlanta, GA 30329, USA (M.S.S.); (R.P.)
| |
Collapse
|
2
|
Lanzillotti C, Iaquinta MR, De Pace R, Mosaico M, Patergnani S, Giorgi C, Tavoni M, Dapporto M, Sprio S, Tampieri A, Montesi M, Martini F, Mazzoni E. Osteosarcoma cell death induced by innovative scaffolds doped with chemotherapeutics. J Cell Physiol 2024; 239:e31256. [PMID: 38591855 DOI: 10.1002/jcp.31256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Raffaella De Pace
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Mosaico
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Laboratories of Cell Signalling, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Laboratories of Cell Signalling, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy (ISSMC-CNR, former ISTEC-CNR), Faenza, Italy
| | - Massimiliano Dapporto
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy (ISSMC-CNR, former ISTEC-CNR), Faenza, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy (ISSMC-CNR, former ISTEC-CNR), Faenza, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy (ISSMC-CNR, former ISTEC-CNR), Faenza, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics, National Research Council of Italy (ISSMC-CNR, former ISTEC-CNR), Faenza, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Weng W, Bovard D, Zanetti F, Ehnert S, Braun B, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. Tobacco heating system has less impact on bone metabolism than cigarette smoke. Food Chem Toxicol 2023; 173:113637. [PMID: 36708864 DOI: 10.1016/j.fct.2023.113637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Cigarette smoking promotes osteoclast activity, thus increasing the risk of secondary osteoporosis, leading to osteoporosis-associated fracture and impaired fracture healing. Heated tobacco products (HTP) are considered potential reduced-risk alternatives to cigarettes. However, their impact on bone metabolism remains to be elucidated. We developed an in vitro model that mimics in vivo bone cell interactions to comparatively evaluate the effects of HTPs and cigarette smoke on bone cell functionality and viability. We generated an in vitro coculture system with SCP-1 and THP-1 cells (1:8 ratio) cultured on a decellularized Saos-2 matrix with an optimized coculture medium. We found that, following acute or chronic exposure, particulate matter extract from the aerosol of an HTP, the Tobacco Heating System (THS), was less harmful to the bone coculture system than reference cigarette (1R6F) smoke extract. In the fracture healing model, cultures exposed to the THS extract maintained similar osteoclast activity and calcium deposits as control cultures. Conversely, smoke extract exposure promoted osteoclast activity, resulting in an osteoporotic environment, whose formation could be prevented by bisphosphonate coadministration. Thus, THS is potentially less harmful than cigarette smoke to bone cell differentiation and bone mineralization - both being crucial aspects during the reparative phase of fracture healing.
Collapse
Affiliation(s)
- Weidong Weng
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Bianca Braun
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tatiana Uynuk-Ool
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| |
Collapse
|
4
|
Testa C, Oliveto S, Jacchetti E, Donnaloja F, Martinelli C, Pinoli P, Osellame R, Cerullo G, Ceri S, Biffo S, Raimondi MT. Whole transcriptomic analysis of mesenchymal stem cells cultured in Nichoid micro-scaffolds. Front Bioeng Biotechnol 2023; 10:945474. [PMID: 36686258 PMCID: PMC9852851 DOI: 10.3389/fbioe.2022.945474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.
Collapse
Affiliation(s)
- Carolina Testa
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Oliveto
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Institute of Photonics and Nanotechnology (IFN)-CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Stefano Biffo
- Department of Bioscience (DBS), University of Milan, Milano, Italy
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| |
Collapse
|
5
|
Yuan P, Qin HY, Wei JY, Chen G, Li X. Proteomics reveals the potential mechanism of Tanshinone IIA in promoting the Ex Vivo expansion of human bone marrow mesenchymal stem cells. Regen Ther 2022; 21:560-573. [DOI: 10.1016/j.reth.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
|
6
|
Akasaka Y. The Role of Mesenchymal Stromal Cells in Tissue Repair and Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:561-574. [PMID: 34841889 DOI: 10.1089/wound.2021.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The present review covers an overview of the current understanding of biology of mesenchymal stromal cells (MSCs) and suggests an important role of their differential potential for clinical approaches associated with tissue repair and fibrosis. Recent Advances: Genetic lineage tracing technology has enabled the delineation of cellular hierarchies and examination of MSC cellular origins and myofibroblast sources. This technique has led to the characterization of perivascular MSC populations and suggests that pericytes might provide a local source of tissue-specific MSCs, which can differentiate into tissue-specific cells for tissue repair and fibrosis. Autologous adipose tissue MSCs led to the advance in tissue engineering for regeneration of damaged tissues. Critical Issues: Recent investigation has revealed that perivascular MSCs might be the origin of myofibroblasts during fibrosis development, and perivascular MSCs might be the major source of myofibroblasts in fibrogenic disease. Adipose tissue MSCs combined with cytokines and biomaterials are available in the treatment of soft tissue defect and skin wound healing. Future Directions: Further investigation of the roles of perivascular MSCs may enable new approaches in the treatment of fibrogenic disease; moreover, perivascular MSCs might have potential as an antifibrotic target for fibrogenic disease. Autologous adipose tissue MSCs combined with cytokines and biomaterials will be an alternative method for the treatment of soft tissue defect and skin wound healing.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Division of Research Promotion and Development, Advanced Research Center, Toho University Graduate School of Medicine, Ota-ku, Japan.,Department of Pathology, Toho University School of Medicine, Ota-ku, Japan
| |
Collapse
|
7
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang Z, Mi T, Jin L, Li M, Zhanghuang C, Wang J, Tan X, Lu H, Shen L, Long C, Wei G, He D. Comprehensive proteomic analysis of exosome mimetic vesicles and exosomes derived from human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2022; 13:312. [PMID: 35841000 PMCID: PMC9284776 DOI: 10.1186/s13287-022-03008-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exosomes derived from mesenchymal stem cells (MSCs) have shown to have effective application prospects in the medical field, but exosome yield is very low. The production of exosome mimetic vesicles (EMVs) by continuous cell extrusion leads to more EMVs than exosomes, but whether the protein compositions of MSC-derived EMVs (MSC-EMVs) and exosomes (MSC-exosomes) are substantially different remains unknown. The purpose of this study was to conduct a comprehensive proteomic analysis of MSC-EMVs and MSC-exosomes and to simply explore the effects of exosomes and EMVs on wound healing ability. This study provides a theoretical basis for the application of EMVs and exosomes. METHODS In this study, EMVs from human umbilical cord MSCs (hUC MSCs) were isolated by continuous extrusion, and exosomes were identified after hUC MSC ultracentrifugation. A proteomic analysis was performed, and 2315 proteins were identified. The effects of EMVs and exosomes on the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by cell counting kit-8, scratch wound, transwell and tubule formation assays. A mouse mode was used to evaluate the effects of EMVs and exosomes on wound healing. RESULTS Bioinformatics analyses revealed that 1669 proteins in both hUC MSC-EMVs and hUC MSC-exosomes play roles in retrograde vesicle-mediated transport and vesicle budding from the membrane. The 382 proteins unique to exosomes participate in extracellular matrix organization and extracellular structural organization, and the 264 proteins unique to EMVs target the cell membrane. EMVs and exosomes can promote wound healing and angiogenesis in mice and promote the proliferation, migration and angiogenesis of HUVECs. CONCLUSIONS This study presents a comprehensive proteomic analysis of hUC MSC-derived exosomes and EMVs generated by different methods. The tissue repair function of EMVs and exosomes was herein verified by wound healing experiments, and these results reveal their potential applications in different fields based on analyses of their shared and unique proteins.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Mujie Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Chenghao Zhanghuang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Xiaojun Tan
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Hongxu Lu
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China. .,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China. .,China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
9
|
Dayem AA, Song K, Lee S, Kim A, Cho SG. New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome. BMB Rep 2022. [PMID: 35410640 PMCID: PMC9152582 DOI: 10.5483/bmbrep.2022.55.5.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Qin L, He T, Yang D, Wang Y, Li Z, Yan Q, Zhang P, Chen Z, Lin S, Gao H, Yao Q, Xu Z, Tang B, Yi W, Xiao G. Osteocyte β1 integrin loss causes low bone mass and impairs bone mechanotransduction in mice. J Orthop Translat 2022; 34:60-72. [PMID: 35615639 PMCID: PMC9119859 DOI: 10.1016/j.jot.2022.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Background The key focal adhesion protein β1 integrin plays an essential role in early skeletal development. However, roles of β1 integrin expression in osteocytes during the regulation of bone homeostasis and mechanotransduction are incompletely understood. Materials and methods To study the in vivo function of osteocyte β1 integrin in bone, we utilized the 10-kb Dmp1 (Dentin matrix acidic phosphoprotein 1)-Cre to generate mice with β1 integrin deletion in this cell type. Micro-computerized tomography, bone histomorphometry and immunohistochemistry were performed to determine the effects of osteocyte β1 integrin loss on bone mass accrual and biomechanical properties. In vivo tibial loading model was applied to study the possible involvement of osteocyte β1 integrin in bone mechanotransduction. Results Loss of β1 integrin expression in osteocytes resulted in a severe low bone mass and impaired biomechanical properties in load-bearing long bones and spines, but not in non-weight-bearing calvariae, in mice. The loss of β1 integrin led to enlarged size of lacunar-canalicular system, abnormal cell morphology, and disorientated nuclei in osteocytes. Furthermore, β1 integrin loss caused shortening and disorientated collagen I fibers in long bones. Osteocyte β1 integrin loss did not impact the osteoclast activities, but significantly reduced the osteoblast bone formation rate and, in the meantime, enhanced the adipogenic differentiation of the bone marrow stromal cells in the bone microenvironment. In addition, tibial loading failed to accelerate the anabolic bone formation and improve collagen I fiber integrity in mutant mice. Conclusions Our studies demonstrate an essential role of osteocyte β1 integrin in regulating bone homeostasis and mechanotransduction. The transnational potential of this article : This study reveals the regulatory roles of osteocyte β1 integrin in vivo for the maintenance of bone mass accrual, biomechanical properties, extracellular matrix integrity as well as bone mechanobiology, which defines β1 integrin a potential therapeutic target for skeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Yishu Wang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Zhenjian Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Zecai Chen
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Sixiong Lin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, China
| | - Huanqing Gao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| | - Zhen Xu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China
| |
Collapse
|
11
|
Dayem AA, Song K, Lee S, Kim A, Cho SG. New therapeutic approach with extracellular vesicles from stem cells for interstitial cystitis/bladder pain syndrome. BMB Rep 2022; 55:205-212. [PMID: 35410640 PMCID: PMC9152582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 03/08/2024] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disorder characterized by suprapubic pain and urinary symptoms such as urgency, nocturia, and frequency. The prevalence of IC/BPS is increasing as diagnostic criteria become more comprehensive. Conventional pharmacotherapy against IC/BPS has shown suboptimal effects, and consequently, patients with end-stage IC/BPS are subjected to surgery. The novel treatment strategies should have two main functions, anti-inflammatory action and the regeneration of glycosaminoglycan and urothelium layers. Stem cell therapy has been shown to have dual functions. Mesenchymal stem cells (MSCs) are a promising therapeutic option for IC/BPS, but they come with several shortcomings, such as immune activation and tumorigenicity. MSC-derived extracellular vesicles (MSC-EVs) hold numerous therapeutic cargos and are thus a viable cell-free therapeutic option. In this review, we provide a brief overview of IC/BPS pathophysiology and limitations of the MSC-based therapies. Then we provide a detailed explanation and discussion of therapeutic applications of EVs in IC/BPS as well as the possible mechanisms. We believe our review will give an insight into the strengths and drawbacks of EV-mediated IC/BPS therapy and will provide a basis for further development. [BMB Reports 2022; 55(5): 205-212].
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Soobin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Arora D, Robey PG. Recent updates on the biological basis of heterogeneity in bone marrow stromal cells/skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:3-16. [PMID: 35837340 PMCID: PMC9255791 DOI: 10.12336/biomatertransl.2022.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrowderived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other "mesenchymal stem/stromal cells", and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.
Collapse
Affiliation(s)
- Deepika Arora
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Department of Commerce, Gaithersburg, MD, USA
- Department of Biotechnology, School of Biological Engineering & Life Sciences, Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Meerut, India
| | - Pamela Gehron Robey
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
13
|
Wang R, Wei W, Rong S, Wang T, Li B. Intravenous injection of SDF-1α-overexpressing bone marrow mesenchymal stem cells has a potential protective effect on myocardial ischemia in mice. Curr Stem Cell Res Ther 2022; 17:348-360. [PMID: 35306996 DOI: 10.2174/1574888x17666220318144608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background Neutrophils are involved in the injury of myocytes during myocardial ischemia (MI). Stem cells migrate to the site of myocardial injury under homing signals and play a protective role, such as inhibiting inflammation. Chemokine SDF-1α and its related receptor CXCR4 are upregulated after myocardial infarction, which may play an important role in stem cell homing. Objectives This study aimed to explore the potential therapeutic effect of SDF-1α-modified bone marrow mesenchymal stem cells on myocardial ischemia/reperfusion (I/R) injury. Methods We explored the role of SDF-1α modified bone marrow mesenchymal stem cells in vivo and in vitro. SDF-1α and CXCR4 expression was detected under hypoxia/reoxygenation (H/R) condition. Cell migration was detected by the transwell method. The levels of SDF-1α and IL-1β, IL-6, IL-10, and TNF-α were detected in different groups. Results In vivo, SDF-1α was mainly upregulated and secreted by cardiomyocytes, and cardiomyocytes recruited stem cells through the SDF-1/CXCR4 pathway to reduce the damage of polymorphic mononuclear neutrophils to cardiomyocytes under H/R. Upregulation of SDF-1α increased the migration ability of BMSC Stem Cells to H/R-induced cardiomyocytes. In vitro, intravenous injection of SDF-1α gene-modified BMSC Stem Cells reduced inflammatory infiltration in the injured area as well as the level of systemic inflammatory factors. Conclusions SDF-1α-overexpressing BMSC Stem Cells protected the heart function of mice and significantly reduced I/R-induced myocardial injury, which has a potential protective effect on MI.
Collapse
Affiliation(s)
- Ruihua Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wen Wei
- The Affiliated Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, P.R. China
| | - Shuling Rong
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Bao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, PR China;
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
14
|
Weng W, Zanetti F, Bovard D, Braun B, Ehnert S, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. A simple method for decellularizing a cell-derived matrix for bone cell cultivation and differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:124. [PMID: 34524552 PMCID: PMC8443471 DOI: 10.1007/s10856-021-06601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/29/2021] [Indexed: 05/02/2023]
Abstract
The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bianca Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Lee DY, Lee SE, Kwon DH, Nithiyanandam S, Lee MH, Hwang JS, Basith S, Ahn JH, Shin TH, Lee G. Strategies to Improve the Quality and Freshness of Human Bone Marrow-Derived Mesenchymal Stem Cells for Neurological Diseases. Stem Cells Int 2021; 2021:8444599. [PMID: 34539792 PMCID: PMC8445711 DOI: 10.1155/2021/8444599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.
Collapse
Affiliation(s)
- Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Eun Lee
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Do Hyeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | - Mi Ha Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Hwan Ahn
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
17
|
Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13:128-138. [PMID: 33584984 PMCID: PMC7859986 DOI: 10.4252/wjsc.v13.i1.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.
AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.
METHODS We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo.
RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features.
CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shu-Fen Liu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
18
|
Xun C, Ge L, Tang F, Wang L, Zhuo Y, Long L, Qi J, Hu L, Duan D, Chen P, Lu M. Insight into the proteomic profiling of exosomes secreted by human OM-MSCs reveals a new potential therapy. Biomed Pharmacother 2020; 131:110584. [PMID: 32841894 DOI: 10.1016/j.biopha.2020.110584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been used for the treatment of neuronal injury and neurodegenerative diseases. Their underlying mechanism may involve increased secretion of paracrine factors, which promotes tissue repair. Presently, exosomes have been regarded as important components of paracrine secretion and paracrine factors. MSC exosomes represent a promising opportunity to develop novel cell-free therapy approaches. In this study, exosomes from nasal olfactory mucosa MSCs (OM-MSCs) were extracted and purified using ultracentrifugation, resulting in exosome diameters of 40-130 nm. Similar to other exosomes, OM-MSC exosomes were CD63- and CD81-positive and calnexin-negative. Functionally, OM-MSC exosomes promoted human brain microvascular endothelial cell (HBMEC) proliferation and migration. The present study analyzed the OM-MSC exosome paracrine proteome. A total of 304 exosome-associated proteins were identified by LC-MS/MS, including plasminogen activator inhibitor 1 (SERPINE 1), insulin-like growth factor binding protein family members (IGFBP 4 and 5), epidermal growth factor receptor (EGFR), neurogenic locus notch homolog protein 2 (NOTCH 2), apolipoprotein E (APOE), and heat shock protein HSP90-beta (HSP90AB1). These molecules are known to be important in neurotrophic, angiogenesis, cell growth, differentiation, apoptosis, and inflammation and are highly correlated with the mechanism of tissue repair and neural restoration. These observations may provide a basis for further evaluation of OM-MSC exosome potential as a novel therapeutic modality.
Collapse
Affiliation(s)
- Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha Hunan, 410011, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Feng Tang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Lu Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Lang Long
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Jiaomei Qi
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Li Hu
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Da Duan
- Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China.
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China; Hunan Provincical Key Laboratory of Neurorestoratology, the Second Affiliated Hospital of Hunan Normal University, Changsha Hunan, 410003, China.
| |
Collapse
|
19
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Suryaji Patil
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
20
|
Ruiz M, Toupet K, Maumus M, Rozier P, Jorgensen C, Noël D. TGFBI secreted by mesenchymal stromal cells ameliorates osteoarthritis and is detected in extracellular vesicles. Biomaterials 2020; 226:119544. [DOI: 10.1016/j.biomaterials.2019.119544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/23/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022]
|
21
|
Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019; 4:22. [PMID: 31815001 PMCID: PMC6889290 DOI: 10.1038/s41536-019-0083-6] [Citation(s) in RCA: 1138] [Impact Index Per Article: 189.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The terms MSC and MSCs have become the preferred acronym to describe a cell and a cell population of multipotential stem/progenitor cells commonly referred to as mesenchymal stem cells, multipotential stromal cells, mesenchymal stromal cells, and mesenchymal progenitor cells. The MSCs can differentiate to important lineages under defined conditions in vitro and in limited situations after implantation in vivo. MSCs were isolated and described about 30 years ago and now there are over 55,000 publications on MSCs readily available. Here, we have focused on human MSCs whenever possible. The MSCs have broad anti-inflammatory and immune-modulatory properties. At present, these provide the greatest focus of human MSCs in clinical testing; however, the properties of cultured MSCs in vitro suggest they can have broader applications. The medical utility of MSCs continues to be investigated in over 950 clinical trials. There has been much progress in understanding MSCs over the years, and there is a strong foundation for future scientific research and clinical applications, but also some important questions remain to be answered. Developing further methods to understand and unlock MSC potential through intracellular and intercellular signaling, biomedical engineering, delivery methods and patient selection should all provide substantial advancements in the coming years and greater clinical opportunities. The expansive and growing field of MSC research is teaching us basic human cell biology as well as how to use this type of cell for cellular therapy in a variety of clinical settings, and while much promise is evident, careful new work is still needed.
Collapse
|
22
|
RETRACTED: Astragalus polysaccharide promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells by down-regulation of microRNA-152. Biomed Pharmacother 2019; 115:108927. [DOI: 10.1016/j.biopha.2019.108927] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
|
23
|
Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, Martin I, Lutolf MP, Ehrbar M. Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels. Adv Healthc Mater 2018; 7:e1800534. [PMID: 30260582 DOI: 10.1002/adhm.201800534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Indexed: 01/31/2023]
Abstract
Cells modulate the functional properties of their environment by depositing extracellular matrix (ECM) proteins during biological processes in vivo and in vitro. Despite the ECMs central role in tissue formation, its quantification in hydrogels like Matrigel, which have a complex materials-inherent biopolymer composition is exceptionally challenging. Here, the use of protein-free, synthetic poly(ethylene glycol) hydrogels enables the analysis of deposited human bone marrow mesenchymal stromal cells ECM directly harvested from fresh 3D cell cultures by a tandem mass spectrometry (LC-MS/MS) method. In this study, it is proved that a label-free LC-MS/MS quantification method can selectively identify proteins deposited in 3D synthetic hydrogels following different growth factor (GF) treatments. Furthermore, it is shown that the sequence in which GFs are administered and the choice of stimuli significantly influences the number and abundance of ECM proteins. Therefore, this provides a versatile method to optimize GF treatments in synthetic hydrogel-based regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Yannick R. Devaud
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
| | - Eva Avilla-Royo
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
- Institute for Biomechanics; Swiss Federal Institute of Technology; CH-8008 Zurich Switzerland
| | - Christian Trachsel
- Functional Genomics Center University of Zurich and ETH Zurich; Winterthurerstr. 190 8057 Zürich Switzerland
| | - Jonas Grossmann
- Functional Genomics Center University of Zurich and ETH Zurich; Winterthurerstr. 190 8057 Zürich Switzerland
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery; University Hospital Basel; University of Basel; Hebelstrasse 20 4031 Basel Switzerland
| | - Matthias P. Lutolf
- Institute of Bioengineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); Station 15, Bld AI 1109 1015 Lausanne Switzerland
| | - Martin Ehrbar
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
| |
Collapse
|
24
|
Klamer SE, Dorland YL, Kleijer M, Geerts D, Lento WE, van der Schoot CE, von Lindern M, Voermans C. TGFBI Expressed by Bone Marrow Niche Cells and Hematopoietic Stem and Progenitor Cells Regulates Hematopoiesis. Stem Cells Dev 2018; 27:1494-1506. [PMID: 30084753 PMCID: PMC6209430 DOI: 10.1089/scd.2018.0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The interactions of hematopoietic stem and progenitor cells (HSPCs) with extracellular matrix (ECM) components and cells from the bone marrow (BM) microenvironment control their homeostasis. Regenerative BM conditions can induce expression of the ECM protein transforming growth factor beta-induced gene H3 (TGFBI or BIGH3) in murine HSPCs. In this study, we examined how increased or reduced TGFBI expression in human HSPCs and BM mesenchymal stromal cells (MSCs) affects HSPC maintenance, differentiation, and migration. HSPCs that overexpressed TGFBI showed accelerated megakaryopoiesis, whereas granulocyte differentiation and proliferation of granulocyte, erythrocyte, and monocyte cultures were reduced. In addition, both upregulation and downregulation of TGFBI expression impaired HSPC colony-forming capacity of HSPCs. Interestingly, the colony-forming capacity of HSPCs with reduced TGFBI levels was increased after long-term co-culture with MSCs, as measured by long-term culture-colony forming cell (LTC-CFC) formation. Moreover, TGFBI downregulation in HSPCs resulted in increased cobblestone area-forming cell (CAFC) frequency, a measure for hematopoietic stem cell (HSC) capacity. Concordantly, TGFBI upregulation in HSPCs resulted in a decrease of CAFC and LTC-CFC frequency. These results indicate that reduced TGFBI levels in HSPCs enhanced HSC maintenance, but only in the presence of MSCs. In addition, reduced levels of TGFBI in MSCs affected MSC/HSPC interaction, as observed by an increased migration of HSPCs under the stromal layer. In conclusion, tight regulation of TGFBI expression in the BM niche is essential for balanced HSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Sofieke E Klamer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Yvonne L Dorland
- 2 Sanquin Research and Landsteiner Laboratory, Department of Molecular and Cellular Hemostasis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Marion Kleijer
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Dirk Geerts
- 3 Department of Medical Biology, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - William E Lento
- 4 Department of Pharmacology, Duke University , Durham, North Carolina
| | - C Ellen van der Schoot
- 5 Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands .,6 Department of Hematology, Academic Medical Center , Amsterdam, the Netherlands
| | - Marieke von Lindern
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| | - Carlijn Voermans
- 1 Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Academic Medical Center, University of Amsterdam , Amsterdam, the Netherlands
| |
Collapse
|
25
|
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S. Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell 2018; 21:166-177. [PMID: 28777943 DOI: 10.1016/j.stem.2017.07.011] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrosis is associated with organ failure and high mortality and is commonly characterized by aberrant myofibroblast accumulation. Investigating the cellular origin of myofibroblasts in various diseases is thus a promising strategy for developing targeted anti-fibrotic treatments. Recent studies using genetic lineage tracing technology have implicated diverse organ-resident perivascular mesenchymal stem cell (MSC)-like cells and bone marrow-MSCs in myofibroblast generation during fibrosis development. In this Review, we give an overview of the emerging role of MSCs and MSC-like cells in myofibroblast-mediated fibrotic disease in the kidney, lung, heart, liver, skin, and bone marrow.
Collapse
Affiliation(s)
- Elie El Agha
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
26
|
TGF-β Signaling Accelerates Senescence of Human Bone-Derived CD271 and SSEA-4 Double-Positive Mesenchymal Stromal Cells. Stem Cell Reports 2018; 10:920-932. [PMID: 29478902 PMCID: PMC5918367 DOI: 10.1016/j.stemcr.2018.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
It is generally thought that the proliferative capacity and differentiation potential of somatic stem cells, including mesenchymal stromal/stem cells (MSCs) and hematopoietic stem cells, decline with age. We investigated the effects of aging on human bone-derived MSCs expressing CD271 and SSEA-4 (double-positive MSCs [DPMSCs]). The percentages of DPMSCs in bone tissue decreased significantly with age. The DPMSCs from elderly patients (old DPMSCs) showed cellular senescence, which was evidenced by low growth potential, high senescence-associated β-galactosidase activity, and elevated p16 and p21 CDK inhibitor levels. Moreover, old DPMSCs showed weak osteogenic differentiation potential and less hematopoiesis-supporting activity in comparison with young DPMSCs. Interestingly, the addition of transforming growth factor β2 (TGF-β2) induced cellular senescence in young DPMSCs. With the exception of the adipogenic differentiation potential, all of the aging phenomena observed in old DPMSCs were reversed by the addition of anti-TGF-β antibodies. These results suggest that, in part, old DPMSCs accelerate cellular senescence through TGF-β signaling. The percentages of CD271+SSEA-4+ MSCs (DPMSCs) in bone tissue decline with age DPMSCs may accelerate cellular senescence through TGF-β2 TGF-β can change the balance of adipogenesis and osteogenesis of DPMSCs The aging phenomena can possibly be reversed by anti-TGF-β antibodies
Collapse
|
27
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|
28
|
Manufacturing Differences Affect Human Bone Marrow Stromal Cell Characteristics and Function: Comparison of Production Methods and Products from Multiple Centers. Sci Rep 2017; 7:46731. [PMID: 28447618 PMCID: PMC5406832 DOI: 10.1038/srep46731] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/08/2017] [Indexed: 01/17/2023] Open
Abstract
Human bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) are manufactured using many different methods, but little is known about the spectrum of manufacturing methods used and their effects on BMSC characteristics and function. Seven centers using, and one developing, Good Manufacturing Practices (GMP) processes were surveyed as to their production methods. Among the seven centers, all used marrow aspirates as the starting material, but no two centers used the same manufacturing methods. Two to four BMSC lots from each center were compared using global gene expression. Among the twenty-four BMSC lots from the eight centers intra-center transcriptome variability was low and similar among centers. Principal component analysis and unsupervised hierarchical clustering analysis separated all the lots from five centers into five distinct clusters. BMSCs from six of the eight centers were tested for their ability to form bone and support hematopoiesis by in vivo transplantation (defining features of BMSCs). Those from all six centers tested formed bone, but the quantity formed was highly variable and BMSCs from only three centers supported hematopoiesis. These results show that differences in manufacturing resulted in variable BMSC characteristics including their ability to form bone and support hematopoiesis.
Collapse
|
29
|
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35:851-858. [PMID: 28294454 DOI: 10.1002/stem.2575] [Citation(s) in RCA: 1153] [Impact Index Per Article: 144.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|
30
|
Okuda A, Horii-Hayashi N, Sasagawa T, Shimizu T, Shigematsu H, Iwata E, Morimoto Y, Masuda K, Koizumi M, Akahane M, Nishi M, Tanaka Y. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. J Neurosurg Spine 2017; 26:388-395. [DOI: 10.3171/2016.8.spine16250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE
Transplantation of bone marrow stromal cells (BMSCs) is a theoretical potential as a therapeutic strategy in the treatment of spinal cord injury (SCI). Although a scaffold is sometimes used for retaining transplanted cells in damaged tissue, it is also known to induce redundant immunoreactions during the degradation processes. In this study, the authors prepared cell sheets made of BMSCs, which are transplantable without a scaffold, and investigated their effects on axonal regeneration, glial scar formation, and functional recovery in a completely transected SCI model in rats.
METHODS
BMSC sheets were prepared from the bone marrow of female Fischer 344 rats using ascorbic acid and were cryopreserved until the day of transplantation. A gelatin sponge (GS), as a control, or BMSC sheet was transplanted into a 2-mm-sized defect of the spinal cord at the T-8 level. Axonal regeneration and glial scar formation were assessed 2 and 8 weeks after transplantation by immunohistochemical analyses using anti-Tuj1 and glial fibrillary acidic protein (GFAP) antibodies, respectively. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan scale.
RESULTS
The BMSC sheets promoted axonal regeneration at 2 weeks after transplantation, but there was no significant difference in the number of Tuj1-positive axons between the sheet- and GS-transplanted groups. At 8 weeks after transplantation, Tuj1-positive axons elongated across the sheet, and their numbers were significantly greater in the sheet group than in the GS group. The areas of GFAP-positive glial scars in the sheet group were significantly reduced compared with those of the GS group at both time points. Finally, hindlimb locomotor function was ameliorated in the sheet group at 4 and 8 weeks after transplantation.
CONCLUSIONS
The results of the present study indicate that an ascorbic acid–induced BMSC sheet is effective in the treatment of SCI and enables autologous transplantation without requiring a scaffold.
Collapse
Affiliation(s)
- Akinori Okuda
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
- 2Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara
| | - Noriko Horii-Hayashi
- 2Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara
| | - Takayo Sasagawa
- 2Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara
| | - Takamasa Shimizu
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| | - Hideki Shigematsu
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| | - Eiichiro Iwata
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| | - Yasuhiko Morimoto
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| | - Keisuke Masuda
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| | - Munehisa Koizumi
- 3Spine and Spinal Cord Surgery Center, Nara Prefecture General Medical Center; and
| | - Manabu Akahane
- 4Department of Public Health, Health Management, and Policy, Nara Medical University, Kashihara, Nara, Japan
| | - Mayumi Nishi
- 2Department of Anatomy and Cell Biology, Faculty of Medicine, Nara Medical University, Kashihara
| | - Yasuhito Tanaka
- 1Department of Orthopaedic Surgery, Nara Medical University, Kashihara
| |
Collapse
|
31
|
Wang Y, Jiang Z, Yu K, Feng Y, Xi Y, Lai K, Huang T, Wang H, Yang G. Improved osseointegrating functionality of cell sheets on anatase TiO2 nanoparticle surfaces. RSC Adv 2017. [DOI: 10.1039/c7ra05134d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bone marrow mesenchymal stem cell sheets (BMSC sheets) have been reported as a powerful tool for bioengineering applications in accelerating osseointegration.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oral Medicine
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Zhiwei Jiang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Ke Yu
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yuting Feng
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Yue Xi
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Kaichen Lai
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Tingben Huang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| | - Guoli Yang
- Department of Implantology
- Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou
| |
Collapse
|
32
|
Dhere T, Copland I, Garcia M, Chiang KY, Chinnadurai R, Prasad M, Galipeau J, Kugathasan S. The safety of autologous and metabolically fit bone marrow mesenchymal stromal cells in medically refractory Crohn's disease - a phase 1 trial with three doses. Aliment Pharmacol Ther 2016; 44:471-81. [PMID: 27385373 DOI: 10.1111/apt.13717] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stromal cells ability to reset immune functionalities may be useful in Crohn's disease. AIM To perform a first-in-human phase 1 safety clinical trial of metabolically fit autologous bone marrow-derived mesenchymal stromal cells in 12 subjects with Crohn's disease utilising three doses. METHODS Autologous mesenchymal stromal cells were derived from marrow aspirate and propagated for 2-3 weeks with fibrinogen depleted human platelet lysate and subsequently administered to subjects without interval cryobanking. Twelve subjects received a single mesenchymal stromal cell intravenous infusion of 2, 5 or 10 million cells/kg BW(n = 4/group). Infused mesenchymal stromal cells were analysed for cell surface marker expression, IDO(indoleamine 2,3-dioxygenase) upregulation by IFNγ stimulation, and inhibition of third party peripheral blood mononuclear cell proliferation in vitro. The primary end point measured was safety and tolerability; clinical response was assessed as a secondary endpoint. RESULTS All patients tolerated the mesenchymal stromal cell infusion well and no dose limiting toxicity was seen. Seven patients had serious adverse events of which five were hospitalisations for Crohn's disease flare. Two of these serious adverse events were possibly related to the mesenchymal stromal cells infusion. Five subjects showed clinical response 2 weeks after the infusion. Mesenchymal stromal cell phenotype, cytokine responsiveness, and peripheral blood mononuclear cell proliferation blockade were not different among the patients. CONCLUSION Single infusion of fresh autologous bone marrow mesenchymal stromal cells propagated ex vivo using human platelet lysate-supplemented media was safe and feasible at intravenous doses of up to 10 million cells/kg BW in patients with Crohn's disease.
Collapse
Affiliation(s)
- T Dhere
- Department of Medicine, Emory University, Atlanta, GA, USA
| | - I Copland
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - M Garcia
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - K Y Chiang
- Department of Pediatrics, Emory University, Atlanta, GA, USA.,Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - R Chinnadurai
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - M Prasad
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - J Galipeau
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - S Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA, USA.,Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
33
|
Jin P, Zhao Y, Liu H, Chen J, Ren J, Jin J, Bedognetti D, Liu S, Wang E, Marincola F, Stroncek D. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype. Sci Rep 2016; 6:26345. [PMID: 27211104 PMCID: PMC4876328 DOI: 10.1038/srep26345] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/26/2016] [Indexed: 01/21/2023] Open
Abstract
Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment.
Collapse
Affiliation(s)
- Ping Jin
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Yuanlong Zhao
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Hui Liu
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Jinguo Chen
- Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiaqiang Ren
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Jianjian Jin
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | | | - Shutong Liu
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | | | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
34
|
Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS One 2016; 11:e0148173. [PMID: 26828589 PMCID: PMC4734718 DOI: 10.1371/journal.pone.0148173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo. Moreover, there is evidence that Ca-P substrate triggers osteogenic differentiation through genes (SMAD and RAS family) that are typically regulated during dexamethasone (DEX) induced differentiation.
Collapse
Affiliation(s)
- Federica Viti
- Institute of Biophysics, National Research Council, Genoa, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Martina Landini
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | | | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Silvia Scaglione
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Genoa, Italy
- Advanced Biotechnology Center (CBA), Genoa, Italy
- * E-mail:
| |
Collapse
|
35
|
Mandarapu R, Prakhya BM. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells. J Immunotoxicol 2016; 13:463-73. [PMID: 26796295 DOI: 10.3109/1547691x.2015.1130088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings.
Collapse
Affiliation(s)
| | - Balakrishna Murthy Prakhya
- a Prakhya Research Laboratories, Selaiyur, Chennai, India ;,b SRM University , Kattankulathur , Chennai , India
| |
Collapse
|
36
|
Amarnath S, Foley JE, Farthing DE, Gress RE, Laurence A, Eckhaus MA, Métais JY, Rose JJ, Hakim FT, Felizardo TC, Cheng AV, Robey PG, Stroncek DE, Sabatino M, Battiwalla M, Ito S, Fowler DH, Barrett AJ. Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells 2016; 33:1200-12. [PMID: 25532725 DOI: 10.1002/stem.1934] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/01/2014] [Indexed: 12/29/2022]
Abstract
The use of bone marrow-derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic graft-versus-host disease (x-GVHD) mediated by human CD4(+) Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; furthermore, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression.
Collapse
Affiliation(s)
- Shoba Amarnath
- Cytokine biology section, Experimental Transplantation and Immunology Branch, National Cancer Institute, Newcastle Upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Koide H, Holmbeck K, Lui JC, Guo XC, Driggers P, Chu T, Tatsuno I, Quaglieri C, Kino T, Baron J, Young MF, Robey PG, Segars JH. Mice Deficient in AKAP13 (BRX) Are Osteoporotic and Have Impaired Osteogenesis. J Bone Miner Res 2015; 30:1887-95. [PMID: 25892096 PMCID: PMC4590282 DOI: 10.1002/jbmr.2534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/03/2015] [Accepted: 04/15/2015] [Indexed: 01/23/2023]
Abstract
Mechanical stimulation is crucial to bone growth and triggers osteogenic differentiation through a process involving Rho and protein kinase A. We previously cloned a gene (AKAP13, aka BRX) encoding a protein kinase A-anchoring protein in the N-terminus, a guanine nucleotide-exchange factor for RhoA in the mid-section, coupled to a carboxyl region that binds to estrogen and glucocorticoid nuclear receptors. Because of the critical role of Rho, estrogen, and glucocorticoids in bone remodeling, we examined the multifunctional role of Akap13. Akap13 was expressed in bone, and mice haploinsufficient for Akap13 (Akap13(+/-)) displayed reduced bone mineral density, reduced bone volume/total volume, and trabecular number, and increased trabecular spacing; resembling the changes observed in osteoporotic bone. Consistent with the osteoporotic phenotype, Colony forming unit-fibroblast numbers were diminished in Akap13(+/-) mice, as were osteoblast numbers and extracellular matrix production when compared to control littermates. Transcripts of Runx2, an essential transcription factor for the osteogenic lineage, and alkaline phosphatase (Alp), an indicator of osteogenic commitment, were both reduced in femora of Akap13(+/-) mice. Knockdown of Akap13 reduced levels of Runx2 and Alp transcripts in immortalized bone marrow stem cells. These findings suggest that Akap13 haploinsufficient mice have a deficiency in early osteogenesis with a corresponding reduction in osteoblast number, but no impairment of mature osteoblast activity.
Collapse
Affiliation(s)
- Hisashi Koide
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenn Holmbeck
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xiaoxiao C Guo
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul Driggers
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tiffany Chu
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ichiro Tatsuno
- Center for Diabetes, Metabolism and Endocrinology, Toho University Sakura Medical Center, Chiba, Japan
| | - Caroline Quaglieri
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tomoshige Kino
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jeffrey Baron
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, USA
| | - James H Segars
- Unit of Reproductive Endocrinology, Program in Reproductive and Adult Endocrinology (PRAE), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
38
|
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr 2015; 8:563-77. [PMID: 25482635 PMCID: PMC4594522 DOI: 10.4161/19336918.2014.968501] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products.
Collapse
Affiliation(s)
- Sofieke Klamer
- a Department of Hematopoiesis; Sanquin Research; Landsteiner Laboratory; Academic Medical Centre ; University of Amsterdam ; Amsterdam , The Netherlands
| | | |
Collapse
|
39
|
Chinnadurai R, Copland IB, Ng S, Garcia M, Prasad M, Arafat D, Gibson G, Kugathasan S, Galipeau J. Mesenchymal Stromal Cells Derived From Crohn's Patients Deploy Indoleamine 2,3-dioxygenase-mediated Immune Suppression, Independent of Autophagy. Mol Ther 2015; 23:1248-1261. [PMID: 25899824 DOI: 10.1038/mt.2015.67] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Autologous bone marrow-derived mesenchymal stromal cells (MSCs) for adoptive cell therapy of luminal Crohn's disease (CD) are being tested in clinical trials. However, CD is associated with dysregulation of autophagy and its effect on MSC's immunobiology is unknown. Here, we demonstrate no quantitative difference in phenotype, in vitro growth kinetics and molecular signatures to IFNγ between MSCs derived from CD and healthy individuals. CD MSCs were indistinguishable from those derived from healthy controls at inhibiting T-cell proliferation through an indoleamine 2,3-dioxygenase (IDO)-dependent mechanism. Upon IFNγ prelicensing, both MSC populations inhibit T-cell effector functions. Neither a single-nucleotide polymorphism (SNP) rs7820268 in the IDO gene, nor a widely reported CD predisposing SNP ATG16L1rs2241880 modulated the suppressive function of MSCs carrying these haplotypes. IFNγ stimulation or coculture with activated T cells upregulated the expression of autophagy genes and/or vacuoles on MSCs. Pharmacological blockade of autophagy pathway did not reverse the immunosuppressive properties and IFNγ responsiveness of MSCs confirming the absence of a functional link between these two cell biochemical properties. We conclude that autophagy, but not IDO and IFNγ responsiveness, is dispensable for MSC's immunosuppressive properties. MSCs from CD subjects are functionally analogous to those of healthy individuals.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Ian B Copland
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA; Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Spencer Ng
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Mahadev Prasad
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Dalia Arafat
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jacques Galipeau
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA; Department of Pediatrics, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
40
|
Holley RJ, Tai G, Williamson AJK, Taylor S, Cain SA, Richardson SM, Merry CLR, Whetton AD, Kielty CM, Canfield AE. Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem Cell Reports 2015; 4:473-88. [PMID: 25684225 PMCID: PMC4375938 DOI: 10.1016/j.stemcr.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal progenitor cells have great therapeutic potential, yet incomplete characterization of their cell-surface interface limits their clinical exploitation. We have employed subcellular fractionation with quantitative discovery proteomics to define the cell-surface interface proteome of human bone marrow mesenchymal stromal/stem cells (MSCs) and human umbilical cord perivascular cells (HUCPVCs). We compared cell-surface-enriched fractions from MSCs and HUCPVCs (three donors each) with adult mesenchymal fibroblasts using eight-channel isobaric-tagging mass spectrometry, yielding relative quantification on >6,000 proteins with high confidence. This approach identified 186 upregulated mesenchymal progenitor biomarkers. Validation of 10 of these markers, including ROR2, EPHA2, and PLXNA2, confirmed upregulated expression in mesenchymal progenitor populations and distinct roles in progenitor cell proliferation, migration, and differentiation. Our approach has delivered a cell-surface proteome repository that now enables improved selection and characterization of human mesenchymal progenitor populations.
Collapse
Affiliation(s)
- Rebecca J Holley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guangping Tai
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Andrew J K Williamson
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Samuel Taylor
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stuart A Cain
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stephen M Richardson
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Catherine L R Merry
- Faculty of Engineering and Physical Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Anthony D Whetton
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Cay M Kielty
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Ann E Canfield
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
41
|
Wang W, Strecker S, Liu Y, Wang L, Assanah F, Smith S, Maye P. Connective Tissue Growth Factor reporter mice label a subpopulation of mesenchymal progenitor cells that reside in the trabecular bone region. Bone 2015; 71:76-88. [PMID: 25464947 PMCID: PMC4274218 DOI: 10.1016/j.bone.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
Few gene markers selectively identify mesenchymal progenitor cells inside the bone marrow. We have investigated a cell population located in the mouse bone marrow labeled by Connective Tissue Growth Factor reporter expression (CTGF-EGFP). Bone marrow flushed from CTGF reporter mice yielded an EGFP+ stromal cell population. Interestingly, the percentage of stromal cells retaining CTGF reporter expression decreased with age in vivo and was half the frequency in females compared to males. In culture, CTGF reporter expression and endogenous CTGF expression marked the same cell types as those labeled using Twist2-Cre and Osterix-Cre fate mapping approaches, which previously had been shown to identify mesenchymal progenitors in vitro. Consistent with this past work, sorted CTGF+ cells displayed an ability to differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and into osteoblast, adipocyte, and stromal cell lineages after transplantation into a parietal bone defect. In vivo examination of CTGF reporter expression in bone tissue sections revealed that it marked cells highly localized to the trabecular bone region and was not expressed in the perichondrium or periosteum. Mesenchymal cells retaining high CTGF reporter expression were adjacent to, but distinct from mature osteoblasts lining bone surfaces and endothelial cells forming the vascular sinuses. Comparison of CTGF and Osterix reporter expression in bone tissue sections indicated an inverse correlation between the strength of CTGF expression and osteoblast maturation. Down-regulation of CTGF reporter expression also occurred during in vitro osteogenic differentiation. Collectively, our studies indicate that CTGF reporter mice selectively identify a subpopulation of bone marrow mesenchymal progenitor cells that reside in the trabecular bone region.
Collapse
Affiliation(s)
- Wen Wang
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Sara Strecker
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Yaling Liu
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Liping Wang
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Fayekah Assanah
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Spenser Smith
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, USA.
| |
Collapse
|
42
|
Robey PG, Kuznetsov SA, Ren J, Klein HG, Sabatino M, Stroncek DF. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone 2015; 70:87-92. [PMID: 25064527 PMCID: PMC4268331 DOI: 10.1016/j.bone.2014.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone.
Collapse
Affiliation(s)
- Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.
| | - Sergei A Kuznetsov
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Jiaqiang Ren
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA; Cell Processing Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Harvey G Klein
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Marianna Sabatino
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA; Cell Processing Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA; Cell Processing Section, Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
43
|
Yin F, Battiwalla M, Ito S, Feng X, Chinian F, Melenhorst JJ, Koklanaris E, Sabatino M, Stroncek D, Samsel L, Klotz J, Hensel NF, Robey PG, Barrett AJ. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells 2014; 32:1278-88. [PMID: 24452962 DOI: 10.1002/stem.1638] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/06/2013] [Indexed: 01/28/2023]
Abstract
Bone marrow mesenchymal stromal cells (BMSCs) have been used to treat acute graft-versus-host disease (GVHD) and other complications following allogeneic hematopoietic stem cell transplantation (SCT). We conducted a phase I trial using third party, early passage BMSCs for patients with steroid-refractory GVHD, tissue injury, or marrow failure following SCT to investigate safety and efficacy. To identify mechanisms of BMSC immunomodulation and tissue repair, patients were serially monitored for plasma GVHD biomarkers, cytokines, and lymphocyte phenotype. Ten subjects were infused a fixed dose of 2 × 10(6) BMSCs/kg intravenously weekly for three doses. There was no treatment-related toxicity (primary endpoint). Eight subjects were evaluable for response at 4 weeks after the last infusion. Five of the seven patients with steroid-refractory acute GVHD achieved a complete response, two of two patients with tissue injury (pneumomediastinum/pneumothorax) achieved resolution but there was no response in two subjects with delayed marrow failure. Rapid reductions in inflammatory cytokines were observed. Clinical responses correlated with a fall in biomarkers (Reg 3α, CK18, and Elafin) relevant for the site of GVHD or tissue injury. The GVHD complete responders survived significantly longer and had higher baseline absolute lymphocyte and central memory CD4 and CD8 counts. Cytokine changes also segregated with survival. These results confirm that BMSCs are associated with rapid clinical and biomarker responses in GVHD and tissue injury. However, BMSCs were ineffective in patients with prolonged GVHD with lower lymphocyte counts, which suggest that effective GVHD control by BMSCs requires a relatively intact immune system.
Collapse
Affiliation(s)
- Fang Yin
- Hematology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Direct T cell-tumour interaction triggers TH1 phenotype activation through the modification of the mesenchymal stromal cells transcriptional programme. Br J Cancer 2014; 110:2955-64. [PMID: 24809778 PMCID: PMC4056054 DOI: 10.1038/bjc.2014.235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/18/2014] [Accepted: 04/09/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are heterogeneous cells with immunoregulatory and wound-healing properties. In cancer, they are known to be an essential part of the tumour microenvironment. However, their role in tumour growth and rejection remains unclear. To investigate this, we co-cultured human MSCs, tumour infiltrating lymphocytes (TIL), and melanoma cells to investigate the role of MSCs in the tumour environment. METHODS Mesenchymal stromal cells were co-cultured with melanoma antigen-specific TIL that were stimulated either with HLA-A*0201(+) melanoma cells or with a corresponding clone that had lost HLA-A*0201 expression. RESULTS Activated TIL induced profound pro-inflammatory gene expression signature in MSCs. Analysis of culture supernatant found that MSCs secreted pro-inflammatory cytokines, including TH1 cytokines that have been previously associated with immune-mediated antitumor responses. In addition, immunohistochemical analysis on selected markers revealed that the same activated MSCs secreted both the TH1 cytokine (interleukin-12) and indoleamine 2,3 dioxygenase (IDO), a classical immunosuppressive factor. CONCLUSIONS This study reflected that the plasticity of MSCs is highly dependent upon microenvironment conditions. Tumour-activated TIL induced TH1 phenotype change in MSCs that is qualitatively similar to the previously described immunologic constant of rejection signature observed during immune-mediated, tissue-specific destruction. This response may be responsible for the in loco amplification of antigen-specific anti-cancer immune response.
Collapse
|
45
|
Battiwalla M, Barrett AJ. Bone marrow mesenchymal stromal cells to treat complications following allogeneic stem cell transplantation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:211-7. [PMID: 24410434 DOI: 10.1089/ten.teb.2013.0566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a technologically complicated procedure that represents the only cure for many hematologic malignancies. However, HSCT is often complicated by life-threatening toxicities related to the chemo-radiation conditioning regimen, poor engraftment of donor HSCs, the hyperinflammatory syndrome of graft-versus-host disease (GVHD), infection risks from immunosuppression, and end-organ damage. Bone marrow stromal cells (MSCs), also known as "mesenchymal stromal cells," not only play a nurturing role in the hematopoietic microenvironment but also can differentiate into other cell types of mesenchymal origin. MSCs are poorly immunogenic, and they can modulate immunological responses through interactions with a wide range of innate and adaptive immune cells to reduce inflammation. They are easily expanded ex vivo and after infusion, home to sites of injury and inflammation to promote tissue repair. Despite promising early trial results in HSCT with significant responses that have translated into survival benefits, there have been significant barriers to successful commercialization as an off-the-shelf therapy. Current efforts with MSCs in the HSCT setting are geared toward determining the factors determining potency, understanding the precise mechanisms of action in human HSCT, knowing their kinetics and fate, optimizing dose and schedule, incorporating biomarkers as response surrogates, addressing concerns about safety, optimizing clinical trial design, and negotiating the uncharted regulatory landscape for licensable cellular therapy.
Collapse
Affiliation(s)
- Minoo Battiwalla
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
46
|
Cheung LC, Strickland DH, Howlett M, Ford J, Charles AK, Lyons KM, Brigstock DR, Goldschmeding R, Cole CH, Alexander WS, Kees UR. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis. Haematologica 2014; 99:1149-56. [PMID: 24727816 DOI: 10.3324/haematol.2013.102327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis.
Collapse
Affiliation(s)
- Laurence C Cheung
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Meegan Howlett
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Jette Ford
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Adrian K Charles
- Princess Margaret Hospital, Perth, WA, Australia School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia
| | | | - David R Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, the Netherlands
| | - Catherine H Cole
- Princess Margaret Hospital, Perth, WA, Australia School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, VIC, Australia
| | - Ursula R Kees
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
47
|
Pavesi A, Soncini M, Zamperone A, Pietronave S, Medico E, Redaelli A, Prat M, Fiore GB. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform. Biotechnol Bioeng 2014; 111:1452-63. [PMID: 24473977 DOI: 10.1002/bit.25201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/07/2014] [Accepted: 01/21/2014] [Indexed: 02/06/2023]
Abstract
In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration.
Collapse
Affiliation(s)
- A Pavesi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chinnadurai R, Copland IB, Patel SR, Galipeau J. IDO-Independent Suppression of T Cell Effector Function by IFN-γ–Licensed Human Mesenchymal Stromal Cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:1491-501. [DOI: 10.4049/jimmunol.1301828] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Civini S, Jin P, Ren J, Sabatino M, Castiello L, Jin J, Wang H, Zhao Y, Marincola F, Stroncek D. Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 2013; 11:298. [PMID: 24304929 PMCID: PMC3882878 DOI: 10.1186/1479-5876-11-298] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/24/2022] Open
Abstract
Background Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-γ and TNF-α change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs. Methods BMSCs from healthy subjects were co-cultured with three myeloid leukemia cell lines (TF-1, TF-1α and K562) using a trans-well system. Following co-culture, the BMSCs and leukemia cells were analyzed by global gene expression analysis and culture supernatants were analyzed for protein expression. As a control, CD34+ cells were also cocultured with BMSCs. Results Co-culture induced leukemia cell gene expression changes in stem cell pluripotency, TGF-β signaling and carcinoma signaling pathways. BMSCs co-cultured with leukemia cells up-regulated a number of proinflammatory genes including IL-17 signaling-related genes and IL-8 and CCL2 levels were increased in co-culture supernatants. In contrast, purine metabolism, mTOR signaling and EIF2 signaling pathways genes were up-regulated in BMSCs co-cultured with CD34+ cells. Conclusions BMSCs react to the presence of leukemia cells undergoing changes in the cytokine and chemokine secretion profiles. Thus, BMSCs and leukemia cells both contribute to the creation of a competitive niche more favorable for leukemia stem cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), Building 10, Room 3C720, 9000 Rockville Pike, Bethesda, MD 20892-1184, USA.
| |
Collapse
|
50
|
Klamer SE, Kuijk CGM, Hordijk PL, van der Schoot CE, von Lindern M, van Hennik PB, Voermans C. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells. Cell Adh Migr 2013; 7:434-49. [PMID: 24152593 DOI: 10.4161/cam.26596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis.
Collapse
Affiliation(s)
- Sofieke E Klamer
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| | - Carlijn G M Kuijk
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| | - Peter L Hordijk
- Department of Molecular Cell Biology; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands; Department of Hematology; Academic Medical Centre; Amsterdam, the Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| | - Paula B van Hennik
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory; Academic Medical Centre; University of Amsterdam; Amsterdam, the Netherlands
| |
Collapse
|