1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Ferraro F, Merlino A, dell´Oca N, Gil J, Tort JF, Gonzalez M, Cerecetto H, Cabrera M, Corvo I. Identification of Chalcones as Fasciola hepatica Cathepsin L Inhibitors Using a Comprehensive Experimental and Computational Approach. PLoS Negl Trop Dis 2016; 10:e0004834. [PMID: 27463369 PMCID: PMC4962987 DOI: 10.1371/journal.pntd.0004834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increased reports of human infections have led fasciolosis, a widespread disease of cattle and sheep caused by the liver flukes Fasciola hepatica and Fasciola gigantica, to be considered an emerging zoonotic disease. Chemotherapy is the main control measure available, and triclabendazole is the preferred drug since is effective against both juvenile and mature parasites. However, resistance to triclabendazole has been reported in several countries urging the search of new chemical entities and target molecules to control fluke infections. METHODOLOGY/PRINCIPLE FINDINGS We searched a library of forty flavonoid derivatives for inhibitors of key stage specific Fasciola hepatica cysteine proteases (FhCL3 and FhCL1). Chalcones substituted with phenyl and naphtyl groups emerged as good cathepsin L inhibitors, interacting more frequently with two putative binding sites within the active site cleft of the enzymes. One of the compounds, C34, tightly bounds to juvenile specific FhCL3 with an IC50 of 5.6 μM. We demonstrated that C34 is a slow-reversible inhibitor that interacts with the Cys-His catalytic dyad and key S2 and S3 pocket residues, determinants of the substrate specificity of this family of cysteine proteases. Interestingly, C34 induces a reduction in NEJ ability to migrate through the gut wall and a loss of motility phenotype that leads to NEJ death within a week in vitro, while it is not cytotoxic to bovine cells. CONCLUSIONS/SIGNIFICANCE Up to date there are no reports of in vitro screening for non-peptidic inhibitors of Fasciola hepatica cathepsins, while in general these are considered as the best strategy for in vivo inhibition. We have identified chalcones as novel inhibitors of the two main Cathepsins secreted by juvenile and adult liver flukes. Interestingly, one compound (C34) is highly active towards the juvenile enzyme reducing larval ability to penetrate the gut wall and decreasing NEJ´s viability in vitro. These findings open new avenues for the development of novel agents to control fluke infection and possibly other helminthic diseases.
Collapse
Affiliation(s)
- Florencia Ferraro
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alicia Merlino
- Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás dell´Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Facultad de Veterinaria, Universidad de la República, Paysandú, Uruguay
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mercedes Gonzalez
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Cabrera
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ileana Corvo
- Laboratorio de Investigación y Desarrollo de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Gao E, Liu L, Zhu M, Huang Y, Guan F, Gao X, Zhang M, Wang L, Zhang W, Sun Y. Synthesis, characterization, interaction with DNA, and cytotoxic effect in vitro of new mono- and dinuclear Pd(II) and Pt(II) complexes with benzo[d]thiazol-2-amine as the primary ligand. Inorg Chem 2011; 50:4732-41. [PMID: 21520903 DOI: 10.1021/ic102142j] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel Pd(II) and Pt(II) complexes, [PdL(2)Cl(2)]·DMF (1), [Pd(2)(L-H)(2)(bpy)Cl(2)]·(H(2)O)(2)·DMF (2), [Pd(2)(L-H)(2)(phen)Cl(2)]·2H(2)O (3), [PtL(2)Cl(2)]·H(2)O (4), [Pt(2)(L-H)(2)(bpy)Cl(2)]·2H(2)O (5), and [Pt(2)(L-H)(2)(phen)Cl(2)]·H(2)O (6), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and L = 1,3-benzothiazol-2-amine, have been synthesized and characterized. The competitive binding of the complexes to DNA has been investigated by fluorescence spectroscopy. The values of the apparent DNA binding constant, calculated from fluorescence spectral studies, were 3.8 × 10(6) (K(app)(4)), 2.9 × 10(6) (K(app)(1)), 2.4 × 10(6) (K(app)(6)), 2.0 × 10(6) (K(app)(5)), 1.2 × 10(6) (K(app)(3)), and 6.9 × 10(5) (K(app)(2)). The binding parameters for the fluorescence Scatchard plot were also determined. On the basis of the data obtained, it indicates that the six complexes bind to DNA with different binding affinities in the relative order 4 > 1 > 6 > 5 > 3 > 2. Viscosity studies carried out on the interaction of complexes with Fish Sperm DNA (FS-DNA) suggested that all complexes bind by intercalation. Gel electrophoresis assay demonstrates that all the complexes can cleave the pBR 322 plasmid DNA and bind to DNA in a similar mode. The cytotoxic activity of the complexes has been also tested against four different cancer cell lines. The results show that all complexes have activity against KB, AGZY-83a, Hep-G2, and HeLa cells. In general, the Pt(II) complexes were found to be more effective than the isostructural Pd(II) complexes. The mononuclear complexes exhibited excellent activity in comparison with the dinuclear complexes in these four cell lines. Moreover, on the KB cell line (the human oral epithelial carcinoma), the observed result seems quite encouraging for the six complexes with IC(50) values ranging from 1.5 to 8.6 μM. Furthermore, apoptosis assay with hematoxylin-eosin staining shows treatment with the six complexes results in morphological changes of KB cells. The results induce apoptosis in KB cells.
Collapse
Affiliation(s)
- EnJun Gao
- Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hau JC, Fontana P, Zimmermann C, De Pover A, Erdmann D, Chène P. Leveraging the contribution of thermodynamics in drug discovery with the help of fluorescence-based thermal shift assays. ACTA ACUST UNITED AC 2011; 16:552-6. [PMID: 21441415 DOI: 10.1177/1087057111399573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new drugs with better pharmacological and safety properties mandates the optimization of several parameters. Today, potency is often used as the sole biochemical parameter to identify and select new molecules. Surprisingly, thermodynamics, which is at the core of any interaction, is rarely used in drug discovery, even though it has been suggested that the selection of scaffolds according to thermodynamic criteria may be a valuable strategy. This poor integration of thermodynamics in drug discovery might be due to difficulties in implementing calorimetry experiments despite recent technological progress in this area. In this report, the authors show that fluorescence-based thermal shift assays could be used as prescreening methods to identify compounds with different thermodynamic profiles. This approach allows a reduction in the number of compounds to be tested in calorimetry experiments, thus favoring greater integration of thermodynamics in drug discovery.
Collapse
Affiliation(s)
- Jean Christophe Hau
- Druggability-Enzymology-Profiling Unit, Oncology Research, Novartis Institutes of BioMedical Research, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|