1
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
2
|
Rocchi D, Blázquez-Barbadillo C, Agamennone M, Laghezza A, Tortorella P, Vicente-Zurdo D, Rosales-Conrado N, Moyano P, Pino JD, González JF, Menéndez JC. Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity. Eur J Med Chem 2020; 210:113061. [PMID: 33310289 DOI: 10.1016/j.ejmech.2020.113061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies. A kinetic study revealed inhibition to be noncompetitive. Some of the compounds showed some degree of selectivity for the MMP-2 and MMP-9 enzymes, which are crucial for brain damage associated to ischemic stroke. Furthermore, some compounds also had a high neuroprotective activity against oxidative stress, which is also very relevant aspect of ischaemic stroke pathogenesis, both decreasing lipid peroxidation and protecting against the oxidative stress-induced reduction in cell viability. One of the compounds, bearing a 2-thienyl substituent at C-9 and a 4-methoxyphenylamino at C-7, had the best-balanced multitarget profile and was selected as a lead on which to base future structural manipulation.
Collapse
Affiliation(s)
- Damiano Rocchi
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Mariangela Agamennone
- Dipartamento di Farmacia, Università degli Studi G. d'Annunzio di Chieti-Pescara, 66100, Chieti, Italy
| | - Antonio Laghezza
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - Paolo Tortorella
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Italy
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Abel-Snape X, Whyte A, Lautens M. Synthesis of Aminated Phenanthridinones via Palladium/Norbornene Catalysis. Org Lett 2020; 22:7920-7925. [DOI: 10.1021/acs.orglett.0c02850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xavier Abel-Snape
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| |
Collapse
|