1
|
Tsukano C, Uchino A, Irie K. Synthesis and applications of symmetric amino acid derivatives. Org Biomol Chem 2024; 22:411-428. [PMID: 37877370 DOI: 10.1039/d3ob01379k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Symmetric α-amino acid derivatives can be used for the synthesis of intermolecularly linked peptides such as dimer-type peptides, and modified peptides in which two amino acids are intramolecularly linked. They are also synthetic intermediates for the total synthesis of natural products and functional molecules. These symmetric amino acid derivatives must be prepared based on organic synthesis. It is necessary to develop an optimal synthetic strategy for constructing the target symmetric amino acid derivative. In this review, we will introduce strategies for synthesizing symmetric amino acid derivatives. Additionally, selected applications of these amino acids in the life sciences will be described.
Collapse
Affiliation(s)
- Chihiro Tsukano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ayumi Uchino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Oluwafemi KA, Oyeneyin OE, Babatunde DD, Agbaffa EB, Aigbogun JA, Odeja OO, Emmanuel AV. Parasitic Protozoans: Exploring the Potential of N,N'-Bis[2-(5-bromo-7-azabenzimidazol-1-yl)-2-oxoethyl]ethylene-1,3-Diamine and Its Cyclohexyl-1,2-diamine Analogue as TryR and Pf-DHODH Inhibitors. Acta Parasitol 2023; 68:807-819. [PMID: 37821729 DOI: 10.1007/s11686-023-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Major human parasitic protozoans, such as Plasmodium falciparum and Trypanosoma brucei, cause malaria and trypanosomiasis also known as sleeping sickness. In anti-parasitic drug discovery research, trypanothione reductase (TryR) and P. falciparum dihydroorotate dehydrogenase (Pf-DHODH) enzymes are key drug targets in T. brucei and P. falciparum, respectively. The possibility of co-infection of single host by T. brucei and P. falciparum is because both parasites exist in sub-Saharan Africa and the problem of parasite drug resistance necessitates the discovery of new scaffolds, which are strange to the organisms causing these infectious diseases-new scaffolds may help overcome established resistance mechanisms of the organisms. METHOD In this study, N,N'-bis[2-(5-bromo-7-azabenzimidazol-1-yl)-2-oxoethyl]ethylene-1,3-diamine and its cyclohexyl-1,2-diamine analogue were explored for their inhibitory potential against TryR and Pf-DHODH by engaging density functional study, molecular dynamic simulations, drug-likeness, in silico and in vitro studies RESULTS/CONCLUSION: Results obtained indicated excellent binding potential of the ligands to the receptors and good ADMET (adsorption, desorption, metabolism, excretion, and toxicity) properties.
Collapse
Affiliation(s)
- Kola A Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Oluwatoba E Oyeneyin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | | | - Eric B Agbaffa
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
- Department of Physical Sciences, Wesley University, Ondo, Nigeria
| | - Jane A Aigbogun
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakayode O Odeja
- Department of Chemistry, Federal University of Petroleum Recourses, Effurun, Nigeria
| | - Abiodun V Emmanuel
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
3
|
Yasuno Y, Mizutani I, Sueuchi Y, Wakabayashi Y, Yasuo N, Shimamoto K, Shinada T. Catalytic Asymmetric Hydrogenation of Dehydroamino Acid Esters with Biscarbamate Protection and Its Application to the Synthesis of xCT Inhibitors. Chemistry 2019; 25:5145-5148. [PMID: 30746782 DOI: 10.1002/chem.201900289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 01/17/2023]
Abstract
Catalytic asymmetric hydrogenation of dehydroamino acid esters with biscarbamate protection was examined for the first time to prepare optically active amino acids. The new method was successfully applied to the synthesis of new cystine-glutamate exchanger inhibitors.
Collapse
Affiliation(s)
- Yoko Yasuno
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Iho Mizutani
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yuki Sueuchi
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Yuuka Wakabayashi
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Nozomi Yasuo
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1, Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| |
Collapse
|
4
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
5
|
Jagu E, Pomel S, Diez-Martinez A, Ramiandrasoa F, Krauth-Siegel RL, Pethe S, Blonski C, Labruère R, Loiseau PM. Synthesis and in vitro antikinetoplastid activity of polyamine–hydroxybenzotriazole conjugates. Bioorg Med Chem 2017; 25:84-90. [DOI: 10.1016/j.bmc.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022]
|
6
|
Persch E, Dumele O, Diederich F. Molekulare Erkennung in chemischen und biologischen Systemen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408487] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Persch E, Dumele O, Diederich F. Molecular recognition in chemical and biological systems. Angew Chem Int Ed Engl 2015; 54:3290-327. [PMID: 25630692 DOI: 10.1002/anie.201408487] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/13/2022]
Abstract
Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | |
Collapse
|
8
|
Sánchez-Murcia PA, Ruiz-Santaquiteria M, Toro MA, de Lucio H, Jiménez MÁ, Gago F, Jiménez-Ruiz A, Camarasa MJ, Velázquez S. Comparison of hydrocarbon-and lactam-bridged cyclic peptides as dimerization inhibitors of Leishmania infantum trypanothione reductase. RSC Adv 2015. [DOI: 10.1039/c5ra06853c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Helical peptides stabilizedviaall-hydrocarbon or lactam side-chain bridging were investigated as disruptors ofLeishmania infantumtrypanothione reductase.
Collapse
Affiliation(s)
| | | | - Miguel A. Toro
- Departamento de Biología de Sistemas
- Universidad de Alcalá
- Madrid
- Spain
| | - Héctor de Lucio
- Departamento de Biología de Sistemas
- Universidad de Alcalá
- Madrid
- Spain
| | | | - Federico Gago
- Departamento de Ciencias Biomédicas
- Unidad Asociada al CSIC
- Universidad de Alcalá
- Madrid
- Spain
| | | | | | | |
Collapse
|
9
|
Persch E, Bryson S, Todoroff NK, Eberle C, Thelemann J, Dirdjaja N, Kaiser M, Weber M, Derbani H, Brun R, Schneider G, Pai EF, Krauth-Siegel RL, Diederich F. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. ChemMedChem 2014; 9:1880-91. [PMID: 24788386 DOI: 10.1002/cmdc.201402032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 01/16/2023]
Abstract
The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inhibitors of Trypanosoma brucei trypanothione reductase: comparative molecular field analysis modeling and structural basis for selective inhibition. Future Med Chem 2013; 5:1753-62. [DOI: 10.4155/fmc.13.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Sleeping sickness is a major cause of death in Africa. Since no secure treatment is available, the development of novel therapeutic agents is urgent. In this context, the enzyme trypanothione reductase (TR) is a prominent molecular target that has been investigated in drug design for sleeping sickness. Results: In this study, comparative molecular field analysis models were generated for a series of Trypanosoma brucei TR inhibitors. Statistically significant results were obtained and the models were applied to predict the activity of external test sets, with good correlation between predicted and experimental results. We have also investigated the structural requirements for the selective inhibition of the parasite‘s enzyme over the human glutathione reductase. Conclusion: The quantitative structure–activity relationship models provided valuable information regarding the essential molecular requirements for the inhibitory activity upon the target protein, providing important insights into the design of more potent and selective TR inhibitors.
Collapse
|