1
|
Comparative transcriptome analysis revealed candidate genes involved in fruiting body development and sporulation in Ganoderma lucidum. Arch Microbiol 2022; 204:514. [PMID: 35867171 DOI: 10.1007/s00203-022-03088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.
Collapse
|
2
|
2-Aminoacrylate stress damages diverse PLP-dependent enzymes in vivo. J Biol Chem 2022; 298:101970. [PMID: 35460692 PMCID: PMC9127364 DOI: 10.1016/j.jbc.2022.101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/20/2023] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is an essential cofactor for a class of enzymes that catalyze diverse reactions in central metabolism. The catalytic mechanism of some PLP-dependent enzymes involves the generation of reactive enamine intermediates like 2-aminoacrylate (2AA). 2AA can covalently modify PLP in the active site of some PLP-dependent enzymes and subsequently inactivate the enzyme through the formation of a PLP–pyruvate adduct. In the absence of the enamine/imine deaminase RidA, Salmonella enterica experiences 2AA-mediated metabolic stress. Surprisingly, PLP-dependent enzymes that generate endogenous 2AA appear to be immune to its attack, while other PLP-dependent enzymes accumulate damage in the presence of 2AA stress; however, structural determinants of 2AA sensitivity are unclear. In this study, we refined a molecular method to query proteins from diverse systems for their sensitivity to 2AA in vivo. This method was then used to examine active site residues of Alr, a 2AA-sensitive PLP-dependent enzyme, that affect its sensitivity to 2AA in vivo. Unexpectedly, our data also showed that a low level of 2AA stress can persist even in the presence of a functional RidA. In summary, this study expands our understanding of 2AA metabolism and takes an initial step toward characterizing the structural determinants influencing enzyme susceptibility to damage by free 2AA.
Collapse
|
3
|
Rudden M, Herman R, Rose M, Bawdon D, Cox DS, Dodson E, Holden MTG, Wilkinson AJ, James AG, Thomas GH. The molecular basis of thioalcohol production in human body odour. Sci Rep 2020; 10:12500. [PMID: 32719469 PMCID: PMC7385124 DOI: 10.1038/s41598-020-68860-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
Body odour is a characteristic trait of Homo sapiens, however its role in human behaviour and evolution is poorly understood. Remarkably, body odour is linked to the presence of a few species of commensal microbes. Herein we discover a bacterial enzyme, limited to odour-forming staphylococci that are able to cleave odourless precursors of thioalcohols, the most pungent components of body odour. We demonstrated using phylogenetics, biochemistry and structural biology that this cysteine-thiol lyase (C-T lyase) is a PLP-dependent enzyme that moved horizontally into a unique monophyletic group of odour-forming staphylococci about 60 million years ago, and has subsequently tailored its enzymatic function to human-derived thioalcohol precursors. Significantly, transfer of this enzyme alone to non-odour producing staphylococci confers odour production, demonstrating that this C-T lyase is both necessary and sufficient for thioalcohol formation. The structure of the C-T lyase compared to that of other related enzymes reveals how the adaptation to thioalcohol precursors has evolved through changes in the binding site to create a constrained hydrophobic pocket that is selective for branched aliphatic thioalcohol ligands. The ancestral acquisition of this enzyme, and the subsequent evolution of the specificity for thioalcohol precursors implies that body odour production in humans is an ancient process.
Collapse
Affiliation(s)
- Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Reyme Herman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Matthew Rose
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Daniel Bawdon
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Diana S Cox
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Eleanor Dodson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Anthony J Wilkinson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK.
| | - A Gordon James
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Borchert AJ, Ernst DC, Downs DM. Reactive Enamines and Imines In Vivo: Lessons from the RidA Paradigm. Trends Biochem Sci 2019; 44:849-860. [PMID: 31103411 PMCID: PMC6760865 DOI: 10.1016/j.tibs.2019.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Metabolic networks are webs of integrated reactions organized to maximize growth and replication while minimizing the detrimental impact that reactive metabolites can have on fitness. Enamines and imines, such as 2-aminoacrylate (2AA), are reactive metabolites produced as short-lived intermediates in a number of enzymatic processes. Left unchecked, the inherent reactivity of enamines and imines may perturb the metabolic network. Genetic and biochemical studies have outlined a role for the broadly conserved reactive intermediate deaminase (Rid) (YjgF/YER057c/UK114) protein family, in particular RidA, in catalyzing the hydrolysis of enamines and imines to their ketone product. Herein, we discuss new findings regarding the biological significance of enamine and imine production and outline the importance of RidA in controlling the accumulation of reactive metabolites.
Collapse
Affiliation(s)
- Andrew J Borchert
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Dustin C Ernst
- Current address: Center for Circadian Biology, University of California, San Diego, San Diego, CA 92161, USA
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Determinants of Thermostability in Serine Hydroxymethyltransferase Identified by Principal Component Analysis. Sci Rep 2017; 7:46463. [PMID: 28422151 PMCID: PMC5396068 DOI: 10.1038/srep46463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Protein thermostability has received growing attention in recent years. Little is known about the determinants of thermal resistance in individual protein families. However, it is known that the mechanism is family-dependent and not identical for all proteins. We present a multivariate statistical analysis to find the determinants of thermostability in one protein family, the serine hydroxymethyltransferase family. Based on principal component analysis, we identified three amino acid fragments as the potential determinants of thermostability. The correlation coefficients between all the putative fragments and the protein thermostability were significant according to multivariable linear regression. Within the fragments, four critical amino acid positions were identified, and they indicated the contributions of Leu, Val, Lys, Asp, Glu, and Phe to thermostability. Moreover, we analyzed the insertions/deletions of amino acids in the sequence, which showed that thermophilic SHMTs tend to insert or delete residues in the C-terminal domain rather than the N-terminal domain. Our study provided a promising approach to perform a preliminary search for the determinants of thermophilic proteins. It could be extended to other protein families to explore their own strategies for adapting to high temperature.
Collapse
|
6
|
Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, Pezzotti A, Bettati S, Campanini B, Mozzarelli A. Structural insight into the interaction ofO-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett 2016; 590:943-53. [DOI: 10.1002/1873-3468.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Thelma A. Pertinhez
- Department of Oncology and Advanced Techniques; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences; Section of General and Organic Chemistry ‘A. Marchesini’; University of Milan; Italy
| | | | | | - Stefano Bettati
- Department of Neurosciences; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
- Institute of Biophysics; CNR; Pisa Italy
| |
Collapse
|
7
|
Fleischman NM, Das D, Kumar A, Xu Q, Chiu HJ, Jaroszewski L, Knuth MW, Klock HE, Miller MD, Elsliger MA, Godzik A, Lesley SA, Deacon AM, Wilson IA, Toney MD. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome. Protein Sci 2014; 23:1060-76. [PMID: 24888348 DOI: 10.1002/pro.2493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Abstract
Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.
Collapse
|
8
|
Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 2013; 8:e77558. [PMID: 24167577 PMCID: PMC3805590 DOI: 10.1371/journal.pone.0077558] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023] Open
Abstract
The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.
Collapse
Affiliation(s)
| | - Ratna Singh
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Pietro Cozzini
- Department of Food Sciences, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
| | - Barbara Campanini
- Department of Pharmacy, University of Parma, Parma, Italy
- * E-mail: (BC); (AM)
| | - Enea Salsi
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Paolo Felici
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Samanta Raboni
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | - Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul F. Cook
- Department of Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
- * E-mail: (BC); (AM)
| |
Collapse
|
9
|
Cystathionine β-Lyase-Like Protein with Pyridoxal Binding Domain Characterized in Leishmania major by Comparative Sequence Analysis and Homology Modelling. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/520435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cystathionine β-lyase-like protein (CBLP), one of the key enzymes involved in methionine biosynthesis utilising pyridoxal phosphate (PLP) as a cofactor, has recently been reported in Leishmania major. Its presence in the parasite and absence in humans warrant its full characterisation and fruition as a potent, selective, and inevitable druggable target. Due to the unavailability of X-ray 3D structure of CBLP, a homology model for this protein was developed for the first time. The model was evaluated for PLP binding site and various conserve domain residues of the protein recommended by comparative sequence analyses by different protein analysis tools. The model was validated and discovered to be robust and statistically significant. The final model was superimposed on template of Arabidopsis thaliana (PDB ID: 1IBJ) and RMSD was found to be 0.486. The PLP binding site residues of both the proteins were ensued to be highly conserved indicated by Gly71, Met72, Tyr95, Asp169, and Ser193 as well as formation of aldimine bond with Lys194. This was further verified through molecular simulation of PLP into the cofactor binding site of the modelled protein. The present study may therefore play a directing role in the designing of novel, potential, and selective antileishmanial agents.
Collapse
|
10
|
Extremophilic SHMTs: from structure to biotechnology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:851428. [PMID: 23841096 PMCID: PMC3697235 DOI: 10.1155/2013/851428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/30/2013] [Indexed: 01/23/2023]
Abstract
Recent advances in molecular and structural biology have improved the availability of virtually any biocatalyst in large quantity and have also provided an insight into the detailed structure-function relationships of many of them. These results allowed the rational exploitation of biocatalysts for use in organic synthesis. In this context, extremophilic enzymes are extensively studied for their potential interest for many biotechnological and industrial applications, as they offer increased rates of reactions, higher substrate solubility, and/or longer enzyme half-lives at the conditions of industrial processes. Serine hydroxymethyltransferase (SHMT), for its ubiquitous nature, represents a suitable model for analyzing enzyme adaptation to extreme environments. In fact, many SHMT sequences from Eukarya, Eubacteria and Archaea are available in data banks as well as several crystal structures. In addition, SHMT is structurally conserved because of its critical metabolic role; consequently, very few structural changes have occurred during evolution. Our research group analyzed the molecular basis of SHMT adaptation to high and low temperatures, using experimental and comparative in silico approaches. These structural and functional studies of SHMTs purified from extremophilic organisms can help to understand the peculiarities of the enzyme activity at extreme temperatures, indicating possible strategies for rational enzyme engineering.
Collapse
|
11
|
Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. BIOMED RESEARCH INTERNATIONAL 2013; 2013:161456. [PMID: 23781496 PMCID: PMC3677616 DOI: 10.1155/2013/161456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/08/2013] [Indexed: 01/03/2023]
Abstract
Human Dopa decarboxylase (hDDC), a pyridoxal 5′-phosphate (PLP) enzyme, displays maxima at 420 and 335 nm and emits fluorescence at 384 and 504 nm upon excitation at 335 nm and at 504 nm when excited at 420 nm. Absorbance and fluorescence titrations of hDDC-bound coenzyme identify a single pKspec of ~7.2. This pKspec could not represent the ionization of a functional group on the Schiff base but that of an enzymic residue governing the equilibrium between the low- and the high-pH forms of the internal aldimine. During the reaction of hDDC with L-Dopa, monitored by stopped-flow spectrophotometry, a 420 nm band attributed to the 4′-N-protonated external aldimine first appears, and its decrease parallels the emergence of a 390 nm peak, assigned to the 4′-N-unprotonated external aldimine. The pH profile of the spectral change at 390 nm displays a pK of 6.4, a value similar to that (~6.3) observed in both kcat and kcat/Km profiles. This suggests that this pK represents the ESH+ → ES catalytic step. The assignment of the pKs of 7.9 and 8.3 observed on the basic side of kcat and the PLP binding affinity profiles, respectively, is also analyzed and discussed.
Collapse
|
12
|
Paiardini A, Pascarella S. Structural mimicry between SLA/LP and Rickettsia surface antigens as a driver of autoimmune hepatitis: insights from an in silico study. Theor Biol Med Model 2013; 10:25. [PMID: 23575112 PMCID: PMC3636016 DOI: 10.1186/1742-4682-10-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic, progressive liver disease, characterized by continuing hepatocellular inflammation and necrosis. A subgroup of AIH patients presents specific autoantibodies to soluble liver antigen/liver-pancreas (SLA/LP) protein, which is regarded as a highly specific diagnostic marker. Autoantigenic SLA/LP peptides are targeted by CD4+ T cells, and restricted by the allele HLA-DRB1*03:01, which confers disease susceptibility in Europeans and Americans. A positively charged residue at position 71 has been indicated as critical for AIH susceptibility in all of the HLA alleles identified to date. Though the exact molecular mechanisms underlying pathogenesis of AIH are not clear, molecular mimicry between SLA/LP and viral/bacterial antigens has been invoked. METHODS The immunodominant region of SLA/LP was used as query in databank searches to identify statistically significant similarities with viral/bacterial peptides. Homology modeling and docking was used to investigate the potential interaction of HLA-DRB1*03:01 with the identified peptides. By molecular mechanics means, the interactions and energy of binding at the HLA binding site was also scrutinized. RESULTS A statistically significant structural similarity between the immunodominant regions of SLA/LP and a region of the surface antigen PS 120 from Rickettsia spp. has been detected. The interaction of the SLA/LP autoepitope and the corresponding Rickettsia sequence with the allele HLA-DRB1*03:01 has been simulated. The obtained results predict for both peptides a similar binding mode and affinity to HLA-DRB1*03:01. A "hot spot" of interaction between HLA-DRB1*03:01 and PS 120 is located at the P4 binding pocket, and is represented by a salt bridge involving Lys at position 71 of the HLA protein, and Glu 795 of PS120 peptide. CONCLUSIONS These findings strongly support the notion that a molecular mimicry mechanism can trigger AIH onset. CD4+ T cells recognizing peptides of SLA/LP could indeed cross-react with foreign Rickettsia spp. antigens. Finally, the same analysis suggests a molecular explanation for the importance of position 71 in conferring the susceptibility of the allele HLA-DRB1*03:01 to AIH. The lack of a positive charge at such position could prevent HLA alleles from binding the foreign peptides and triggering the molecular mimicry event.
Collapse
Affiliation(s)
- Alessandro Paiardini
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza - Università di Roma, Roma, 00185, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza - Università di Roma, Roma, 00185, Italy
| |
Collapse
|