1
|
Vasilev H, Šmejkal K, Jusková S, Vaclavik J, Treml J. Five New Tamarixetin Glycosides from Astragalus thracicus Griseb. Including Some Substituted with the Rare 3-Hydroxy-3-methylglutaric Acid and Their Collagenase Inhibitory Effects In Vitro. ACS OMEGA 2024; 9:18023-18031. [PMID: 38680358 PMCID: PMC11044239 DOI: 10.1021/acsomega.3c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Along with the known kaempferol-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (1), five new flavonoids, containing the rarely isolated aglycon tamarixetin, were isolated from a methanolic extract of the endemic Balkan species Astragalus thracicus Griseb. Three of the new compounds are substituted with 3-hydroxy-3-methylglutaryl residue (HMG), untypical for the genus Astragalus. The compounds were identified as tamarixetin-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (2), tamarixetin-3-O-(2,6-di-O-α-l-rhamnopyranosyl)-β-d-galactopyranoside (3), tamarixetin 3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside (4), tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (5), and tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 6)]-β-d-galactopyranoside (6). Selected compounds from A. thracicus were tested to evaluate their anticollagenase activity. The greatest effect was observed for quercetin-3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside, possibly due to the presence of an ortho-dihydroxy arrangement of flavonoid ring B. The effect on collagenase and elastase was further evaluated also by in silico study, and the test compounds showed some level of in silico interaction.
Collapse
Affiliation(s)
- Hristo Vasilev
- Department
of Pharmacognosy, Faculty of Pharmacy, Medical
University, 2 Dunav Street, Sofia 1000, Bulgaria
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Karel Šmejkal
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Sabina Jusková
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jiri Vaclavik
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jakub Treml
- Department
of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| |
Collapse
|
2
|
Kumar RM, Kumar H, Bhatt T, Jain R, Panchal K, Chaurasiya A, Jain V. Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics. Pharmaceuticals (Basel) 2023; 16:196. [PMID: 37259344 PMCID: PMC9961076 DOI: 10.3390/ph16020196] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 09/21/2023] Open
Abstract
Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms involved in the development and progression of cancer. Several treatment strategies including the use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However, its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes. This review aims to provide in-depth information regarding fisetin as a potential candidate for anticancer therapy, its properties and various formulation strategies.
Collapse
Affiliation(s)
- Rachna M. Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Kanan Panchal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad, Telangana 500078, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
3
|
Marques RV, Guillaumin A, Abdelwahab AB, Salwinski A, Gotfredsen CH, Bourgaud F, Enemark-Rasmussen K, Miguel S, Simonsen HT. Collagenase and Tyrosinase Inhibitory Effect of Isolated Constituents from the Moss Polytrichum formosum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071271. [PMID: 34206653 PMCID: PMC8309073 DOI: 10.3390/plants10071271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Mosses from the genus Polytrichum have been shown to contain rare benzonaphthoxanthenones compounds, and many of these have been reported to have important biological activities. In this study, extracts from Polytrichum formosum were analyzed in vitro for their inhibitory properties on collagenase and tyrosinase activity, two important cosmetic target enzymes involved respectively in skin aging and pigmentation. The 70% ethanol extract showed a dose-dependent inhibitory effect against collagenase (IC50 = 4.65 mg/mL). The methanol extract showed a mild inhibitory effect of 44% against tyrosinase at 5.33 mg/mL. Both extracts were investigated to find the constituents having a specific affinity to the enzyme targets collagenase and tyrosinase. The known compounds ohioensin A (1), ohioensin C (3), and communin B (4), together with nor-ohioensin D (2), a new benzonaphthoxanthenone, were isolated from P. formosum. Their structures were determined by mass spectrometry and NMR spectroscopy. Compounds 1 (IC50 = 71.99 µM) and 2 (IC50 = 167.33 µM) showed inhibitory activity against collagenase. Compound 1 also exhibited inhibition of 30% against tyrosinase activity at 200 µM. The binding mode of the active compounds was theoretically generated by an in-silico approach against the 3D structures of collagenase and tyrosinase. These current results present the potential application from the moss P. formosum as a new natural source of collagenase and tyrosinase inhibitors.
Collapse
Affiliation(s)
- Raíssa Volpatto Marques
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads 223, 2800 Kongens Lyngby, Denmark
| | - Agnès Guillaumin
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Ahmed B Abdelwahab
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Aleksander Salwinski
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Frédéric Bourgaud
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
- Cellengo, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Kasper Enemark-Rasmussen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Sissi Miguel
- Cellengo, 19 Avenue de la Forêt de Haye, 54500 Vandœuvre-lès-Nancy, France
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads 223, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Pan H, Hu Q, Wang J, Liu Z, Wu D, Lu W, Huang J. Myricetin is a novel inhibitor of human inosine 5'-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun 2016; 477:915-922. [PMID: 27378425 DOI: 10.1016/j.bbrc.2016.06.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 01/14/2023]
Abstract
Human inosine 5'-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC50 values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity.
Collapse
Affiliation(s)
- Huiling Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Qian Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Zehui Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Dang Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Gajos-Michniewicz A, Czyz M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. Fitoterapia 2016; 109:283-92. [DOI: 10.1016/j.fitote.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
|
6
|
Jin X, Zhang D, Li H, Jin N, Liu T, Kong X. Soluble Expression of Bladder Cancer Biomarker Matrix Metalloproteinase 1. J Clin Lab Anal 2014; 29:275-80. [PMID: 25043669 DOI: 10.1002/jcla.21764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/14/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase 1 (MMP1) has been shown as a novel unique biomarker of bladder cancer in urine. MMP1 can only be detected using conventional and time-consuming methods, such as ELISA and Western. Refolded MMP1 has been achieved and used in probe screen for many years, while there is no clinical application for MMP1 detection until now. Soluble expression of MMP1 is necessary in urine detection. METHODS cDNA of MMP1 has been isolated from human embryonic kidney 293(HEK293) cells. The catalytic domain of MMP1 is expressed as fusion protein with Escherichia coli thioredoxin (TrxA). The 30 kDa recombinant proteins were purified by Ni-chelating chromatography. The activity of soluble MMP1 was determined and compared with refolded MMP1 by zymography. RESULTS Compared with refolded MMP1, TrxA can increase the solubility of MMP1. The soluble MMP1 has the same protein sequences with refolded MMP1 and increased 1.54-fold of gelatin-degradation activities than refolded MMP1. CONCLUSION Successfully soluble expression of MMP1 has been achieved by fusion expression and will make progress in discovering specific molecular probes against MMP1.
Collapse
Affiliation(s)
- Xuefei Jin
- Department of Urinary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dan Zhang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Hongyan Li
- Department of Urinary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ning Jin
- Department of Urinary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Tingting Liu
- The Retired People in Army Residents of Jilin, Changchun, China
| | - Xiangbo Kong
- Department of Urinary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
7
|
Abstract
SIGNIFICANCE Diet-derived antioxidants are now being increasingly investigated for their health-promoting effects, including their role in the chemoprevention of cancer. In general, botanical antioxidants have received much attention, as they can be consumed for longer periods of time without any adverse effects. Flavonoids are a broadly distributed class of plant pigments that are regularly consumed in the human diet due to their abundance. One such flavonoid, fisetin (3,3',4',7-tetrahydroxyflavone), is found in various fruits and vegetables, such as strawberry, apple, persimmon, grape, onion, and cucumber. RECENT ADVANCES Several studies have demonstrated the effects of fisetin against numerous diseases. It is reported to have neurotrophic, anticarcinogenic, anti-inflammatory, and other health beneficial effects. CRITICAL ISSUES Although fisetin has been reported as an anticarcinogenic agent, further in-depth in vitro and in vivo studies are required to delineate the mechanistic basis of its observed effects. In this review article, we describe the multiple effects of fisetin with special emphasis on its anticancer activity as investigated in cell culture and animal models. FUTURE DIRECTIONS Additional research focused toward the identification of molecular targets could lead to the development of fisetin as a chemopreventive/chemotherapeutic agent against cancer and other diseases.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|