1
|
Giovannuzzi S, Bonardi A, Gratteri P, Nocentini A, Supuran CT. Discovery of the first-in-class potent and isoform-selective human carbonic anhydrase III inhibitors. J Enzyme Inhib Med Chem 2023; 38:2202360. [PMID: 37092262 PMCID: PMC10128460 DOI: 10.1080/14756366.2023.2202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Considering the unrecognised physio-pathological role of human carbonic anhydrase III (hCA III), a structure-based drug design was set up to identify the first-in-class potent and selective inhibitors of this neglected isoform. hCA III targeting was planned considering a unique feature of its active site among the other hCA isoforms, i.e. the Leu198/Phe198 substitution which interferes with the binding of aromatic/heterocyclic sulfonamides and other inhibitors. Thus, new aliphatic primary sulfonamides possessing long and flexible (CH2)nSO2NH2 moieties were designed to coordinate the zinc(II) ion, bypassing the bulky Phe198 residue. They incorporate 1,2,3-triazole linkers which connect the tail moieties to the sulfonamide head, enhancing thus the contacts at the active site entrance. Some of these compounds act as nanomolar and selective inhibitors of hCA III over other isoforms. Docking/molecular dynamics simulations were used to investigate ligand/target interactions for these sulfonamides which might improve our understanding of the physio-pathological roles of hCA III.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
- NEUROFARBA Department, Laboratory of Molecular Modeling, Cheminformatics & QSAR, University of Florence, Firenze, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy
| |
Collapse
|
2
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
3
|
Al-Jaidi BA, Deb PK, Telfah ST, Dakkah AN, Bataineh YA, Khames Aga QAA, Al-dhoun MA, Ahmad Al-Subeihi AA, Odetallah HM, Bardaweel SK, Mailavaram R, Venugopala KN, Nair AB. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors. J Enzyme Inhib Med Chem 2020; 35:1483-1490. [PMID: 32635773 PMCID: PMC7470151 DOI: 10.1080/14756366.2020.1786820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
A series of 17 compounds (12-16 b) with 2,4,5-trisubstitutedthiazole scaffold having 5-aryl group, 4-carboxylic acid/ester moiety, and 2-amino/amido/ureido functional groups were synthesised, characterised, and evaluated for their carbonic anhydrase (CA)-III inhibitory activities using the size exclusion Hummel-Dreyer method (HDM) of chromatography. Compound 12a with a free amino group at the 2-position, carboxylic acid moiety at the 4-position, and a phenyl ring at the 5-position of the scaffold was found to be the most potent CA-III inhibitor (Ki = 0.5 μM). The presence of a carboxylic acid group at the 4-position of the scaffold was found to be crucial for the CA-III inhibitory activity. Furthermore, replacement of the free amino group with an amide and urea group resulted in a significant reduction of activity (compounds 13c and 14c, Ki = 174.1 and 186.2 μM, respectively). Thus, compound 12a (2-amino-5-phenylthiazole-4-carboxylic acid) can be considered as the lead molecule for further modification and development of more potent CA-III inhibitors.
Collapse
Affiliation(s)
- Bilal A. Al-Jaidi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Soha Taher Telfah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Abdel Naser Dakkah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Mohammad A. Al-dhoun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Haifa’a Marouf Odetallah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Daoud NEHK, Alzweiri M. Inhibitory Binding of Angiotensin Converting Enzyme Inhibitors with Carbonic Anhydrase III. Chromatographia 2020. [DOI: 10.1007/s10337-020-03973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Arar S, Al-Qudah E, Alzweiri M, Sweidan K. New forced degradation products of vildagliptin: Identification and structural elucidation using LC-MS, with proposed formation mechanisms. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1779084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sharif Arar
- Department of Chemistry, School of Science, The University of Jordan, Amman, Jordan
| | - Enas Al-Qudah
- Department of Chemistry, School of Science, The University of Jordan, Amman, Jordan
| | - Muhammad Alzweiri
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Kamal Sweidan
- Department of Chemistry, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Dos Santos Maia M, Soares Rodrigues GC, Silva Cavalcanti AB, Scotti L, Scotti MT. Consensus Analyses in Molecular Docking Studies Applied to Medicinal Chemistry. Mini Rev Med Chem 2020; 20:1322-1340. [PMID: 32013847 DOI: 10.2174/1389557520666200204121129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
The increasing number of computational studies in medicinal chemistry involving molecular docking has put the technique forward as promising in Computer-Aided Drug Design. Considering the main method in the virtual screening based on the structure, consensus analysis of docking has been applied in several studies to overcome limitations of algorithms of different programs and mainly to increase the reliability of the results and reduce the number of false positives. However, some consensus scoring strategies are difficult to apply and, in some cases, are not reliable due to the small number of datasets tested. Thus, for such a methodology to be successful, it is necessary to understand why, when and how to use consensus docking. Therefore, the present study aims to present different approaches to docking consensus, applications, and several scoring strategies that have been successful and can be applied in future studies.
Collapse
Affiliation(s)
- Mayara Dos Santos Maia
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Andreza Barbosa Silva Cavalcanti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| |
Collapse
|
7
|
Mohammad HK, Alzweiri MH, Khanfar MA, Al-Hiari YM. 6-Substituted nicotinic acid analogues, potent inhibitors of CAIII, used as therapeutic candidates in hyperlipidemia and cancer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1825-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|