1
|
Isbel SR, Patil SA, Bugarin A. NHCs silver complexes as potential antimicrobial agents. Inorganica Chim Acta 2024; 563:121899. [PMID: 38292701 PMCID: PMC10824532 DOI: 10.1016/j.ica.2023.121899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
NHCs (N-heterocyclic carbenes) are generally used as organic ligands that can coordinate with metal ions like silver to form stable complexes. These complexes have shown enhanced antimicrobial properties compared to silver alone. This document provides an overview of the reported NHC-based silver derivatives (acetates, chlorides, bromides, and iodides) who possess antimicrobial activity. This review covers articles published between the first report (2006) and 2023.
Collapse
Affiliation(s)
- Stephen R. Isbel
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| | - Siddappa A. Patil
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
- Centre for Nano & Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, Karnataka, India
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|
2
|
Öner E, Gök Y, Demir Y, Taskin-Tok T, Aktaş A, Gülçin İ, Yalın S. Benzimidazolium Salts Bearing Nitrile Moieties: Synthesis, Enzyme Inhibition Profiling, and Molecular Docking Analysis for Carbonic Anhydrase and Acetylcholinesterase. Chem Biodivers 2023; 20:e202301362. [PMID: 37953698 DOI: 10.1002/cbdv.202301362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This report presents the synthesis and characterization of a range of benzimidazolium salts featuring 3-cyanopropyl groups on the 1st nitrogen atom and varied alkyl groups on the 3rd nitrogen atom within the benzimidazole structure. Benzimidazolium salts were synthesized by N-alkylation of 1-alkyl benzimidazole with 3-cyanopropyl-bromide. The new salts were characterized by 1 H and 13 C-NMR, FT-IR spectroscopic and elemental analysis techniques. In this study, the enzyme inhibition abilities of seven nitrile substituted benzimidazolium salts were investigated against acetylcholinesterase (AChE) and carbonic anhydrase isoenzymes I and II (hCA I and hCA II). They showed a highly potent inhibition effect on AChE, hCA I and hCA II (Ki values are in the range of 26.71-119.09 nM for AChE, 19.77 to 133.68 nM for hCA I and 13.09 to 266.38 nM for hCA II). Reflecting the binding mode of the synthesized cyanopropyl series, the importance of the 2,3,5,6-tetramethylbenzyl, 3-methylbenzyl and 3-benzyl groups for optimal interactions with target proteins, evaluated by molecular docking studies. At the same time, the docking findings support the inhibition constants (Ki ) values of the related compounds in this study. Potential compounds were also evaluated by their pharmacokinetic properties were predicted.
Collapse
Affiliation(s)
- Erkan Öner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, 02040-, Adıyaman, Türkiye
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
- Organic and Organometallic Chemistry Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, -Ardahan, Türkiye
| | - Tugba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, 27310-, Gaziantep, Türkiye
| | - Aydın Aktaş
- Organic and Organometallic Chemistry Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280-, Malatya, Türkiye
- Vocational School of Health Service, Inonu University, 44280-, Malatya, Türkiye
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240-, Erzurum, Türkiye
| | - Serap Yalın
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Türkiye
| |
Collapse
|
3
|
Ronga L, Varcamonti M, Tesauro D. Structure-Activity Relationships in NHC-Silver Complexes as Antimicrobial Agents. Molecules 2023; 28:molecules28114435. [PMID: 37298911 DOI: 10.3390/molecules28114435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Silver has a long history of antimicrobial activity and received an increasing interest in last decades owing to the rise in antimicrobial resistance. The major drawback is the limited duration of its antimicrobial activity. The broad-spectrum silver containing antimicrobial agents are well represented by N-heterocyclic carbenes (NHCs) silver complexes. Due to their stability, this class of complexes can release the active Ag+ cations in prolonged time. Moreover, the properties of NHC can be tuned introducing alkyl moieties on N-heterocycle to provide a range of versatile structures with different stability and lipophilicity. This review presents designed Ag complexes and their biological activity against Gram-positive, Gram-negative bacteria and fungal strains. In particular, the structure-activity relationships underlining the major requirements to increase the capability to induce microorganism death are highlighted here. Moreover, some examples of encapsulation of silver-NHC complexes in polymer-based supramolecular aggregates are reported. The targeted delivery of silver complexes to the infected sites will be the most promising goal for the future.
Collapse
Affiliation(s)
- Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cynthia, 80143 Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano, 49, 80131 Naples, Italy
| |
Collapse
|
4
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Fluorinated benzimidazolium salts: Synthesis, characterization, molecular docking studies and inhibitory properties against some metabolic enzymes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. Int J Mol Sci 2022; 23:ijms231810291. [PMID: 36142214 PMCID: PMC9499586 DOI: 10.3390/ijms231810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) serve as alternative candidates for antibiotics and have attracted the attention of a wide range of industries for various purposes, including the prevention and treatment of piglet diarrhea in the swine industry. Escherichia coli, Salmonella, and Clostridium perfringens are the most common pathogens causing piglet diarrhea. In this study, the antimicrobial peptide gloverin2 (BMGlv2), derived from Bombyx mandarina, was explored to determine the efficient prevention effect on bacterial piglet diarrhea. BMGlv2 was heterologously expressed in Trichoderma reesei Tu6, and its antimicrobial properties against the three bacteria were characterized. The results showed that the minimum inhibitory concentrations of the peptide against E. coli ATCC 25922, S. derby ATCC 13076, and C. perfringens CVCC 2032 were 43.75, 43.75, and 21.86 μg/mL, respectively. The antimicrobial activity of BMGlv2 was not severely affected by high temperature, salt ions, and digestive enzymes. It had low hemolytic activity against rabbit red blood cells, indicating its safety for use as a feed additive. Furthermore, the measurements of the leakage of bacterial cell contents and scanning electron microscopy of C. perfringens CVCC 2032 indicated that BMGlv2 exerted antimicrobial activity by destroying the cell membrane. Overall, this study showed the heterologous expression of the antimicrobial peptide BMGlv2 in T. reesei and verified its antimicrobial properties against three common pathogenic bacteria associated with piglet diarrhea, which can provide a reference for the applications of AMPs as an alternative product in industrial agriculture.
Collapse
|
7
|
Yiğit M, Şireci N, Günal S, Önderci M, Özdemir N, Arınç A, Yiğit B, Özdemir İ. Synthesis, spectroscopic characterization and antimicrobial properties of silyl-tethered benzimidazolium salts. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zin NFHM, Shyen SOY, Khor BK, Chear NJY, Tang WK, Siu CK, Razali MR, Haque RA, Yam W. Cytotoxicity of asymmetric mononuclear silver(I)-N-heterocyclic carbene complexes against human cervical cancer: Synthesis, crystal structure, DFT calculations and effect of substituents. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Tutar U, Çelik C, Şahin N. Allyl Functionalized Benzimidazolium-Derived Ag(I)-N-Heterocyclic Carbene Complexes: Anti-Biofilm and Antimicrobial Properties. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Antimicrobial activity, inhibition of biofilm formation, and molecular docking study of novel Ag-NHC complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Celepci DB, Yiğit B, Yiğit M, Özdemir İ, Aygün M. Amine-functionalized benzimidazolium salts: Synthesis, structural characterization, hirshfeld surface analysis and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Liang J, Sun D, Yang Y, Li M, Li H, Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur J Med Chem 2021; 224:113696. [PMID: 34274828 DOI: 10.1016/j.ejmech.2021.113696] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial resistance (AMR) is an intractable problem for the world. Metal ions are essential for the cell process and biological function in microorganisms. Many metal-based complexes with the potential for releasing ions are more likely to be absorbed for their higher lipid solubility. Hence, this review highlights the clinical potential of organometallic compounds for the treatment of infections caused by bacteria or fungi in recent five years. The common scaffolds, including antimicrobial peptides, N-heterocyclic carbenes, Schiff bases, photosensitive-grand-cycle skeleton structures, aliphatic amines-based ligands, and special metal-based complexes are summarized here. We also discuss their therapeutic targets and the risks that should be paid attention to in the future studies, aiming to provide information for researchers on metal-based complexes as antimicrobial agents and inspire the design and synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingxue Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Nayak S, Gaonkar SL. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021; 16:1360-1390. [PMID: 33277791 DOI: 10.1002/cmdc.202000836] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/15/2022]
Abstract
New weapons are constantly needed in the fight against cancer. The discovery of cisplatin as an anticancer drug prompted the search for new metal complexes. The successful history of cisplatin motivated chemists to develop a plethora of metal-based molecules. Among them, metal-N-heterocyclic carbene (NHC) complexes have gained significant attention because of their suitable qualities for efficient drug design. The enhanced applications of coinage metal-NHC complexes have encouraged a gradually increasing number of studies in the fields of medicinal chemistry that benefit from the fascinating chemical properties of these complexes. This review aims to present recent developments in synthetic strategies and medicinal applications of copper, silver and gold complexes supported by NHC ligands.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
14
|
Bal S, Demirci Ö, Şen B, Taslimi P, Aktaş A, Gök Y, Aygün M, Gülçin İ. Synthesis, characterization, crystal structure, α-glycosidase, and acetylcholinesterase inhibitory properties of 1,3-disubstituted benzimidazolium salts. Arch Pharm (Weinheim) 2021; 354:e2000422. [PMID: 33427318 DOI: 10.1002/ardp.202000422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Chloro-/fluorobenzyl-substituted benzimidazolium salts were synthesized from the reaction of 4-fluorobenzyl/2-chloro-4-fluorobenzyl-substituted benzimidazole and chlorinated aromatic hydrocarbons. They were characterized using various spectroscopic techniques (Fourier-transform infrared and nuclear magnetic resonance) and elemental analysis. In addition, the crystal structures of the complexes 1a -d and 2b were determined by single-crystal X-ray diffraction methods. These compounds were crystallized in the triclinic crystal system with a P-1 space group. The crystal packing of all complexes is dominated by O-H⋯Cl hydrogen bonds, which link the water molecules and chloride anions, forming a chloride-water tetrameric cluster. These synthesized salts were found to be effective inhibitors for α-glycosidase and acetylcholinesterase (AChE), with Ki values ranging from 45.77 ± 6.83 to 102.61 ± 11.56 µM for α-glycosidase and 0.94 ± 0.14 to 10.24 ± 1.58 µM for AChE. AChE converts acetylcholine into choline and acetic acid, thus causing the return of a cholinergic neuron to its resting state. Discovering AChE and α-glycosidase inhibitors is one of the important ways to develop new drugs for the treatment of Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- Selma Bal
- Department of Chemistry, Faculty of Science and Arts, University of Kahramanmaraş Sütçü Imam, Kahramanmaraş, Turkey
| | - Özlem Demirci
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey
| | - Betül Şen
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey.,Vocational School of Health Service, Faculty of Science, Inonu University, Malatya, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
15
|
N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015–2020). Future Med Chem 2020; 12:2239-2275. [DOI: 10.4155/fmc-2020-0175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
N-heterocyclic carbenes (NHCs) are organic compounds that typically mimic the chemical properties of phosphines. NHCs have made a significant impact on the field of coordination and organometallic chemistry because they are easy to prepare and handle and because of their versatility and stability. Importantly, the physicochemical properties of NHCs can be easily fine-tuned by simple variation of substituents on the nitrogen atoms. Over the past few years, various NHC–metal complexes have been extensively used as metal-based drug candidates and catalysts (homogeneous or heterogeneous) for various applications. To help assist future work with these compounds, this review provides a thorough review on the latest information involving some biomedical applications of NHC–metal complexes. Specifically, this article focuses on recent advances in the design, synthesis, characterization and biomedical applications (e.g., antimicrobial and anticancer activity) of various NHC–metal complexes (metal: silver, gold, palladium, rhodium, ruthenium, iridium and platinum) covering work published from 2015 to 2020. It is hoped that the promising discoveries to date will help accelerate studies on the encouraging potential of NHC–metal complexes as a class of effective therapeutic agents.
Collapse
|
16
|
Novel amine-functionalized benzimidazolium salts: Synthesis, characterization, bioactivity, and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127802] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Sharhan O, Heidelberg T, Hashim NM, Al-Madhagi WM, Ali HM. Benzimidazolium-acridine-based silver N-heterocyclic carbene complexes as potential anti-bacterial and anti-cancer drug. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Novel 2-methylimidazolium salts: Synthesis, characterization, molecular docking, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Bioorg Chem 2020; 94:103468. [DOI: 10.1016/j.bioorg.2019.103468] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
19
|
Prusty JS, Kumar A. Coumarins: antifungal effectiveness and future therapeutic scope. Mol Divers 2019; 24:1367-1383. [PMID: 31520360 DOI: 10.1007/s11030-019-09992-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to develop a suitable antifungal that has minimum side effect as well as no MDR issues. Due to serious undesired effects connected with individual antifungals, it is now necessary to introduce novel and effective drugs having numerous potentials to regulate complex therapeutic targets of several fungal infections simultaneously. Thus, by taking a lead from this subject, synthesis of potent antifungals from coumarin moiety could contribute to the development of promising antifungal. Its resemblance and structural diversity make it possible to produce an auspicious antifungal candidate. Due to the natural origin of coumarin, its presence in diversity, and their broad spectrum of pharmacological activities, it secures an important place for the researcher to investigate and develop it as a promising antifungal in future. This manuscript discusses the bioavailability of coumarin (natural secondary metabolic molecule) that has privileged scaffold for many mycologists to develop it as a broad-spectrum antifungal against several opportunistic mycoses. As a result, several different kinds of coumarin derivatives were synthesized and their antifungal properties were evaluated. This review compiles various coumarin derivatives broadly investigated for antifungal activities to understand its current status and future therapeutic scope in antifungal therapy.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, 492010, India.
| |
Collapse
|
20
|
Akkoç S, Kayser V, İlhan İÖ. Synthesis and
In Vitro
Anticancer Evaluation of Some Benzimidazolium Salts. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3687] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Senem Akkoç
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel University Isparta 32260 Turkey
| | - Veysel Kayser
- School of PharmacyThe University of Sydney Sydney NSW 2006 Australia
| | - İlhan Özer İlhan
- Faculty of Sciences, Department of ChemistryErciyes University Kayseri 38039 Turkey
| |
Collapse
|
21
|
Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl Substituted Benzimidazole Bromide Salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Türker F, Barut Celepci D, Aktaş A, Taslimi P, Gök Y, Aygün M, Gülçin İ. meta
-Cyanobenzyl substituted benzimidazolium salts: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Arch Pharm (Weinheim) 2018; 351:e1800029. [DOI: 10.1002/ardp.201800029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Ferhat Türker
- Faculty of Arts and Sciences, Department of Chemistry; Inönü University; Malatya Turkey
| | - Duygu Barut Celepci
- Faculty of Science, Department of Physics; Dokuz Eylül University, Buca; İzmir Turkey
| | - Aydın Aktaş
- Faculty of Arts and Sciences, Department of Chemistry; Inönü University; Malatya Turkey
| | - Parham Taslimi
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| | - Yetkin Gök
- Faculty of Arts and Sciences, Department of Chemistry; Inönü University; Malatya Turkey
| | - Muhittin Aygün
- Faculty of Science, Department of Physics; Dokuz Eylül University, Buca; İzmir Turkey
| | - İlhami Gülçin
- Faculty of Science, Department of Chemistry; Ataturk University; Erzurum Turkey
| |
Collapse
|
23
|
Cevik UA, Saglik BN, Ozkay Y, Canturk Z, Bueno J, Demirci F, Koparal AS. Synthesis of New Fluoro-Benzimidazole Derivatives as an Approach towards the Discovery of Novel Intestinal Antiseptic Drug Candidates. Curr Pharm Des 2018; 23:2276-2286. [PMID: 27908268 PMCID: PMC5543573 DOI: 10.2174/1381612822666161201150131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/10/2016] [Indexed: 11/22/2022]
Abstract
In the present study, nineteen new fluoro-benzimidazole derivatives, including nifuroxazide analogs, were synthesized by microwave-supported reactions and tested against a panel of pathogenic microorganisms consisting of resistant strains. The synthesized compounds were characterized and identified by FT-IR, 1H- and 13C-NMR, mass spectroscopy, and elemental analyses, respectively. In vitro antimicrobial and cytotoxic effects of the synthesized compounds were determined by microdilution and by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. The compound 4-[5(6)-fluoro-1H-benzimidazol-2-yl)-N'-(2-methylbenzylidene)]benzohydrazide (18) showed particularly high inhibitory activity against the gastro-intestinal pathogens, such as Escherichia coli O157:H7, Escherichiacoli ATCC 8739, Escherichia coli ATCC 35218 and Salmonella typhimurium ATCC 13311 standard strains, with minimum inhibitory concentrations (MIC90) ranging from 0.49–0.98 µg/mL. The microbial panel contained a total of ten pathogens including Klebsiella sp., Mycobacterium sp., MRSA, etc., for which the level of inhibitory activity measured was higher than that exhibited by the tested concentrations (MIC > 1000 µg/mL). In vitro cytotoxicity results revealed that the inhibitory concentration (IC50) value (210.23 µg/mL) of compound 18 against CCD 841 CoN cells (human intestinal epithelial cell line) is about 430 times higher than its MIC90 value against the tested Escherichia coli strains. Furthermore, the docking study of compound 18 suggested that its structure is very compatible with the active site pocket of the phosphofructokinase-2 enzyme.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Begum Nurpelin Saglik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, P.O. Box: 26470, Eskisehir, Turkey
| | - Zerrin Canturk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology 26470, Eskisehir, Turkey
| | - Juan Bueno
- Bioprospecting Development and Consulting, Bogota, Colombia
| | - Fatih Demirci
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskisehir, Turkey
| | - Ali Savas Koparal
- Anadolu University, Faculty of Engineering, Department of Environmental Engineering, Eskisehir, Turkey
| |
Collapse
|
24
|
Sarı Y, Aktaş A, Taslimi P, Gök Y, Gulçin İ. NovelN-propylphthalimide- and 4-vinylbenzyl-substituted benzimidazole salts: Synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yakup Sarı
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - Aydın Aktaş
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Arts and Sciences; Inönü University; Malatya 44280 Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
25
|
Erdoğan H, Aktaş A, Gök Y, Sarı Y. N-Propylphthalimide-substituted bis-(NHC)PdX2 complexes: synthesis, characterization and catalytic activity in direct arylation reactions. TRANSIT METAL CHEM 2017. [DOI: 10.1007/s11243-017-0190-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
New compounds based on a benzimidazole nucleus: synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Sarı Y, Akkoç S, Gök Y, Sifniotis V, Özdemir İ, Günal S, Kayser V. Benzimidazolium-based novel silver N-heterocyclic carbene complexes: synthesis, characterisation and in vitro antimicrobial activity. J Enzyme Inhib Med Chem 2016; 31:1527-30. [DOI: 10.3109/14756366.2016.1156102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yakup Sarı
- Department of Chemistry, Faculty of Science and Arts, Inönü University, Malatya, Turkey,
| | - Senem Akkoç
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Turkey,
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia, and
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inönü University, Malatya, Turkey,
| | - Vicki Sifniotis
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia, and
| | - İlknur Özdemir
- Department of Chemistry, Faculty of Science and Arts, Inönü University, Malatya, Turkey,
| | - Selami Günal
- Department of Microbiology, Faculty of Medicine, Inönü University, Malatya, Turkey
| | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia, and
| |
Collapse
|