1
|
Yıldırım A, Atmaca U, Şahin E, Taslimi P, Taskin-Tok T, Çelik M, Gülçin İ. The synthesis, carbonic anhydrase and acetylcholinesterase inhibition effects of sulfonyl chloride moiety containing oxazolidinones using an intramolecular aza-Michael addition. J Biomol Struct Dyn 2025; 43:1052-1067. [PMID: 38100567 DOI: 10.1080/07391102.2023.2291163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023]
Abstract
Oxazolidinones are used as various potent antibiotics, in organisms it acts as a protein synthesis inhibitor, focusing on an initial stage that encompasses the tRNA binding process. Novel intramolecular aza-Michael reactions devoid of metal catalysts have been introduced in an oxazolidone synthesis pathway, different from α,β-unsaturated ketones. Oxazolidinone derivatives were tested against acetylcholinesterase (AChE), carbonic anhydrase I and II (hCA I and hCA II) enzymes. All the synthesized compounds had potent inhibition effects with Ki values in the range of 13.57 ± 0.98 - 53.60 ± 6.81 µM against hCA I and 9.96 ± 1.02 - 46.35 ± 3.83 µM against hCA II in comparison to the acetazolamide (AZA) (Ki = 50.46 ± 6.17 µM for hCA I) and for hCA II (Ki = 41.31 ± 5.05 µM). Also, most of the compounds demonstrated potent inhibition ability towards AChE enzyme with Ki values 78.67-231.75 nM and compared to tacrine (TAC) as standard clinical inhibitor (Ki = 142.48 nM). Furthermore, ADMET analysis and molecular docking were calculated using the AChE, hCA I and hCA II enzyme proteins to correlate the data with the experimental data. In this work, recent applications of a stereoselective aza-Michael reaction as an efficient tool for of nitrogen-containing heterocyclic scaffolds and their useful to pharmacology analogs are reviewed and summarized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alper Yıldırım
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ufuk Atmaca
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Ertan Şahin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Sciences, Bartin University, Bartin, Turkey
| | - Tugba Taskin-Tok
- Faculty of Arts and Sciences, Department of Chemistry, Gaziantep University, Gaziantep, Turkey
- Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Murat Çelik
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Kekeçmuhammed H, Tapera M, Aydoğdu E, Sarıpınar E, Aydin Karatas E, Mehtap Uc E, Akyuz M, Tüzün B, Gulcin İ, Emin Bora R, Özer İlhan İ. Synthesis, Biological Activity Evaluation and Molecular Docking of Imidazole Derivatives Possessing Hydrazone Moiety. Chem Biodivers 2023; 20:e202200886. [PMID: 37132191 DOI: 10.1002/cbdv.202200886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/04/2023]
Abstract
In an attempt to identify potential active anticancer agents with low cytotoxic properties and CA inhibitors, a new series of hybrid compounds incorporating imidazole ring and hydrazone moiety as part of their structure were synthesized by aza-Michael addition reaction followed by intramolecular cyclization. The structure of synthesized compounds was elucidated using various spectral techniques. Synthesized compounds were evaluated for their in vitro anticancer (prostate cell lines; PC3) and CA inhibitory (hCA I and hCA II) activity. Among them, some compound displayed remarkable anticancer activity and CA inhibitory activity with Ki values in range of 17.53±7.19-150.50±68.87 nM against cytosolic hCA I isoform associated with epilepsy, and 28.82±14.26-153.27±55.80 nM against dominant cytosolic hCA II isoforms associated with glaucoma. Furthermore, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities. The proteins used for the calculations are prostate cancer protein (PDB ID: 3RUK and 6XXP). ADME/T analysis was carried out to examine the drug properties of the studied molecules.
Collapse
Affiliation(s)
- Hüseyin Kekeçmuhammed
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Michael Tapera
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Ekrem Aydoğdu
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Emin Sarıpınar
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Eda Mehtap Uc
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050-, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, 58140-, Sivas, Turkey
| | - İlhami Gulcin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240-, Erzurum, Turkey
| | - Rıfat Emin Bora
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - İlhan Özer İlhan
- Department of Chemistry, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
3
|
Güven L, Erturk A, Miloğlu FD, Alwasel S, Gulcin İ. Screening of Antiglaucoma, Antidiabetic, Anti-Alzheimer, and Antioxidant Activities of Astragalus alopecurus Pall-Analysis of Phenolics Profiles by LC-MS/MS. Pharmaceuticals (Basel) 2023; 16:ph16050659. [PMID: 37242442 DOI: 10.3390/ph16050659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Astragalus species are traditionally used for diabetes, ulcers, leukemia, wounds, stomachaches, sore throats, abdominal pain, and toothaches. Although the preventive effects of Astragalus species against diseases are known, there is no record of the therapeutic effects of Astragalus alopecurus. In this study, we aimed to evaluate the in vitro antiglaucoma, antidiabetic, anti-Alzheimer's disease, and antioxidant activities of the methanolic (MEAA) and water (WEAA) extracts of the aerial part of A. alopecurus. Additionally, its phenolic compound profiles were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MEAA and WEAA were evaluated for their inhibition ability on α-glycosidase, α-amylase, acetylcholinesterase (AChE), and human carbonic anhydrase II (hCA II) enzymes. The phenolic compounds of MEAA were analyzed by LC-MS/MS. Furthermore, total phenolic and flavonoid contents were determined. In this context, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), N,N-dimethyl-p-phenylene diamine (DMPD), ferric reducing antioxidant power (FRAP), cupric ions (Cu2+) reducing antioxidant capacity (CUPRAC), ferric ions (Fe3+) reducing, and ferrous ions (Fe2+) chelating methods. MEAA and WEAA had IC50 values of 9.07 and 2.24 μg/mL for α-glycosidase, 693.15 and 346.58 μg/mL for α-amylase, 1.99 and 2.45 μg/mL for AChE, and 147.7 and 171.7 μg/mL for hCA II. While the total phenolic amounts in MEAA and WEAA were 16.00 and 18.50 μg gallic acid equivalent (GAE)/mg extract, the total flavonoid contents in both extracts were calculated as 66.23 and 33.115 μg quercetin equivalent (QE)/mg, respectively. MEAA and WEAA showed, respectively, variable activities on DPPH radical scavenging (IC50: 99.02 and 115.53 μg/mL), ABTS radical scavenging (IC50: 32.21 and 30.22 µg/mL), DMPD radical scavenging (IC50: 231.05 and 65.22 μg/mL), and Fe2+ chelating (IC50: 46.21 and 33.01 μg/mL). MEAA and WEAA reducing abilities were, respectively, Fe3+ reducing (λ700: 0.308 and 0.284), FRAP (λ593: 0.284 and 0.284), and CUPRAC (λ450: 0.163 and 0.137). A total of 35 phenolics were scanned, and 10 phenolic compounds were determined by LC-MS/MS analysis. LC-MS/MS revealed that MEAA mainly contained isorhamnetin, fumaric acid, and rosmarinic acid derivatives. This is the first report indicating that MEAA and WEAA have α-glycosidase, α-amylase, AChE, hCA II inhibition abilities, and antioxidant activities. These results demonstrate the potential of Astragalus species through antioxidant properties and enzyme inhibitor ability traditionally used in medicine. This work provides the foundation for further research into the establishment of novel therapeutics for diabetes, glaucoma, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leyla Güven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Adem Erturk
- Department of Pharmacy Services, Hınıs Vocational School, Ataturk University, 25600 Erzurum, Turkey
| | - Fatma Demirkaya Miloğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - İlhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
4
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
5
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Bulut Z, Abul N, Poslu AH, Gülcin İ, Ece A, Erçağ E, Koz Ö, Koz G. Structural Characterization and Biological Evaluation of Uracil-Appended Benzylic Amines as Acetylcholinesterase and Carbonic Anhydrase I and II Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Kolade SO, Izunobi JU, Gordon AT, Hosten EC, Olasupo IA, Ogunlaja AS, Asekun OT, Familoni OB. N-Cycloamino substituent effects on the packing architecture of ortho-sulfanilamide molecular crystals and their in silico carbonic anhydrase II and IX inhibitory activities. Acta Crystallogr C Struct Chem 2022; 78:730-742. [PMID: 36468556 PMCID: PMC9720883 DOI: 10.1107/s2053229622010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.
Collapse
Affiliation(s)
- Sherif O. Kolade
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | | | - Allen T. Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Eric C. Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Idris A. Olasupo
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Adeniyi S. Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Olayinka T. Asekun
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | | |
Collapse
|
8
|
Hamide M, Gök Y, Demir Y, Yakalı G, Tok TT, Aktaş A, Sevinçek R, Güzel B, Gülçin İ. Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Development of benzene and benzothiazole-sulfonamide analogues as selective inhibitors of the tumor-associated carbonic anhydrase IX. Eur J Med Chem 2022; 243:114793. [DOI: 10.1016/j.ejmech.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
10
|
Bayrak C. Synthesis and aldose reductase inhibition effects of celecoxib derivatives containing pyrazole linked-sulfonamide moiety. Bioorg Chem 2022; 128:106086. [PMID: 35973306 DOI: 10.1016/j.bioorg.2022.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
In this article, we report the synthesis of Celecoxib derivatives containing the pyrazole-linked sulfonamide moiety. The enzyme inhibition effects of these derivatives on aldose reductase (AR) were also investigated. The IC50 values of the pyrazole sulfonamide derivatives were determined to be in the range of 40.76-8.25 µM. Among the synthesized derivatives, the compound 16 showed the strongest inhibition effect against the AR enzyme, with an IC50 value of 8.25 µM. Molecular docking studies were carried out to determine the interactions of the synthesized compounds with the AR enzyme, and ADMET studies were performed to assess the pharmacokinetic and drug-likeness properties.
Collapse
Affiliation(s)
- Cetin Bayrak
- Dogubayazit Ahmed-i Hani Vocational School, Agri Ibrahim Cecen University, Agri 04400, Turkey; Department of Chemistry, Faculty of Science, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
11
|
Tokalı FS, Demir Y, Demircioğlu İH, Türkeş C, Kalay E, Şendil K, Beydemir Ş. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev Res 2022; 83:586-604. [PMID: 34585414 DOI: 10.1002/ddr.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
A series of novel sulfonates containing quinazolin-4(3H)-one ring derivatives was designed to inhibit aldose reductase (ALR2, EC 1.1.1.21). Novel quinazolinone derivatives (1-21) were synthesized from the reaction of sulfonated aldehydes with 3-amino-2-alkylquinazolin-4(3H)-ones in glacial acetic acid with good yields (85%-94%). The structures of the novel molecules were characterized using IR, 1 H-NMR, 13 C-NMR, and HRMS. All the novel quinazolinones (1-21) demonstrated nanomolar levels of inhibitory activity against ALR2 (KI s are in the range of 101.50-2066.00 nM). Besides, 4-[(2-isopropyl-4-oxoquinazolin-3[4H]-ylimino)methyl]phenyl benzenesulfonate (15) showed higher inhibitor activity inhibited ALR2 up to 7.7-fold compared to epalrestat, a standard inhibitor. Binding interactions between ALR2 and quinazolinones have been investigated using Schrödinger Small-Molecule Drug Discovery Suite 2021-1, reported possible inhibitor-ALR2 interactions. Both in vitro and in silico study results suggest that these quinazolin-4(3H)-one ring derivatives (1-21) require further molecular modification to improve their drug nominee potency as an ALR2 inhibitor.
Collapse
Affiliation(s)
- Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
12
|
Burmaoglu S, Kazancioglu EA, Kazancioglu MZ, Sağlamtaş R, Yalcin G, Gulcin I, Algul O. Synthesis, molecular docking and some metabolic enzyme inhibition properties of biphenyl-substituted chalcone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gulcin I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
15
|
Synthesis, Antimicrobial, Anti-virulence and Anticancer Evaluation of New 5(4H)-Oxazolone-Based Sulfonamides. Molecules 2022; 27:molecules27030671. [PMID: 35163939 PMCID: PMC8838850 DOI: 10.3390/molecules27030671] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a–k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.
Collapse
|
16
|
Huseynova M, Farzaliyev V, Medjidov A, Aliyeva M, Özdemir M, Taslimi P, Zorlu Y, Yalçın B, Şahin O. Synthesis, biological and theoretical properties of crystal zinc complex with thiosemicarbazone of glyoxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir İ, Aygün M, Gülçin İ. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties. Bioorg Chem 2021; 120:105566. [PMID: 34974209 DOI: 10.1016/j.bioorg.2021.105566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
A series of chiral and achiral cyclic seleno- and thiourea compounds bearing benzyl groups on N-atoms were prepared from enetetramines and appropriate Group VI elements in good yields. All the synthesized compounds were characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy, and the molecular and crystal structures of (R,R)-4b and (R,R)-5b were confirmed by the single-crystal X-ray diffraction method. These assayed for their activities against metabolic enzymes acetylcholinesterase, butyrylcholinesterase, and α-glycosidase. These selenourea and thiourea derivatives of chiral and achiral enetetramines effectively inhibit AChE and BChE with IC50 values in the range of 3.32-11.36 and 1.47-9.73 µM, respectively. Also, these compounds inhibited α-glycosidase enzyme with IC50 values varying between 1.37 and 8.53 µM. The results indicated that all the synthesized compounds exhibited excellent inhibitory activities against mentioned enzymes as compared with standard inhibitors. Representatively, the most potent compound against α-glycosidase enzyme, (S,S)-5b, was 12-times more potent than standard inhibitor acarbose; 7b and 8a as most potent compounds against cholinesterase enzymes, were around 5 and 13-times more potent than standard inhibitor tacrine against achethylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education, Adiyaman University, 02040 Adıyaman, Turkey.
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, 02040 Adıyaman, Turkey
| | - Engin Çetinkaya
- Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova-İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey; Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey; Drug Application and Research Center, İnönü University, 44280 Malatya, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
18
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
19
|
Akıncıoğlu A, Göksu S, Naderi A, Akıncıoğlu H, Kılınç N, Gülçin İ. Cholinesterases, carbonic anhydrase inhibitory properties and in silico studies of novel substituted benzylamines derived from dihydrochalcones. Comput Biol Chem 2021; 94:107565. [PMID: 34474201 DOI: 10.1016/j.compbiolchem.2021.107565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of novel urea, sulfamide and N,N-dipropargyl substituted benzylamines were synthesized from dihydrochalcones. The synthesized compounds were evaluated for their cholinesterases and carbonic anhydrase inhibitory actions. The known dihydrochalcones were converted into four new benzylamines via reductive amination. N,N-Dipropargylamines, ureas and sulfamides were synthesized following the reactions of benzylamines with propargyl bromide, N,N-dimethyl sulfamoyl chloride and N,N-dimethyl carbamoyl chloride. The novel substituted benzylamines derived from dihydrochalcones were evaluated against some enzymes such as human erythrocyte carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The novel substituted benzylamines derived from dihydrochalcones exhibited Ki values in the range of 0.121-1.007 nM on hCA I, and 0.077-0.487 nM on hCA II closely related to several pathological processes. On the other hand, Ki values were found in the range of 0.112-0.558 nM on AChE, 0.061-0.388 nM on BChE. As a result, novel substituted benzylamines derived from dihydrochalcones showed potent inhibitory profiles against indicated metabolic enzymes. In addition, Induced-Fit Docking (IFD) simulations and ADME prediction studies have also been carried out to elucidate the inhibition mechanisms and drug-likeness of the synthesized compounds. Therefore, these results can make significant contributions to the treatment of some global diseases, especially Alzheimer's diseases and glaucoma, and the development of new drugs.
Collapse
Affiliation(s)
- Akın Akıncıoğlu
- Agri Ibrahim Cecen University, Central Researching Laboratory, 04100 Agri, Turkey
| | - Süleyman Göksu
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey.
| | - Ali Naderi
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| | - Hülya Akıncıoğlu
- Agri Ibrahim Cecen University, Faculty of Arts and Science, Agri, Turkey
| | - Namık Kılınç
- Igdir University, Vocational School of Health Services, Department of Medical Services and Techniques, Igdir, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, Erzurum, Turkey
| |
Collapse
|
20
|
Topal F, Aksu K, Gulcin I, Tümer F, Goksu S. Inhibition Profiles of Some Symmetric Sulfamides Derived from Phenethylamines on Human Carbonic Anhydrase I, and II Isoenzymes. Chem Biodivers 2021; 18:e2100422. [PMID: 34387019 DOI: 10.1002/cbdv.202100422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds (11-18) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66-28.88 nM against hCA I, 14.44-30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki : 8.34±1.60 nM) and hCA II (Ki : 16.40±1.00 nM) is compound number 11. Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds (11-18) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Gümüşhane Vocational School, Gümüşhane University, Gümüşhane, 29100, Turkey
| | - Kadir Aksu
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, Ordu, 52200, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences and Arts, Sütçü İmam University, Kahramanmaraş, 46100, Turkey
| | - Süleyman Goksu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
21
|
Shamna I, Kwan Jeong S, Margandan B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-Siloxane aerogel beads for biomimetic sequestration of CO2. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Tuğrak M, Gül Hİ, Sakagami H, Kaya R, Gülçin İ. Synthesis and biological evaluation of new pyrazolebenzene-sulphonamides as potential anticancer agents and hCA I and II inhibitors. Turk J Chem 2021; 45:528-539. [PMID: 34385849 PMCID: PMC8326471 DOI: 10.3906/kim-2009-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1
H
-pyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 – 400 µM. The compounds 4i (PSE2 = 461.5) and 4g (PSE1 = 193.2) had the highest PSE values in cytotoxicity assays. Ki values of the compounds were in the range of 59.8 ± 3.0 - 12.7 ± 1.7 nM towards hCA I and in the range of 24.1 ± 7.1 - 6.9 ± 1.5 nM towards hCA II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency towards hCA I and hCA II, respectively. These compounds can be considered as lead compounds for further research.
Collapse
Affiliation(s)
- Mehtap Tuğrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Halise İnci Gül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Hiroshi Sakagami
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama Japan
| | - Rüya Kaya
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey.,Central Research and Application Laboratory, Ağrı İbrahim Çeçen University, Ağrı Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| |
Collapse
|
23
|
Yamali C, Sakagami H, Uesawa Y, Kurosaki K, Satoh K, Masuda Y, Yokose S, Ece A, Bua S, Angeli A, Supuran CT, Gul HI. Comprehensive study on potent and selective carbonic anhydrase inhibitors: Synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021; 217:113351. [PMID: 33744685 DOI: 10.1016/j.ejmech.2021.113351] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.6 nM) was 47 times more selective inhibitor of hCA XI over hCA II compared to the acetazolamide. Compounds 11 (CC50 = 5.2 μM) and 20 (CC50 = 1.6 μM) showed comparative tumor-specificity (TS= > 38.5; >128.2) with doxorubicin (TS > 43.0) towards HSC-2 cancer cell line. Western blot analysis demonstrated that 11 induced slightly apoptosis whereas 20 did not induce detectable apoptosis. A preliminary analysis showed that some correlation of tumor-specificity of 1-20 with the chemical descriptors that reflect hydrophobic volume, dipole moment, lowest hydrophilic energy, and topological structure. Molecular docking simulations were applied to the synthesized ligands to elucidate the predicted binding mode and selectivity profiles towards hCA I, hCA II, and hCA IX.
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, Saitama, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kota Kurosaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Saitama, Japan
| | - Yoshiko Masuda
- Department of Operative Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita Degli Studi di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
24
|
Tugrak M, Gul HI, Demir Y, Levent S, Gulcin I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Arch Pharm (Weinheim) 2021; 354:e2000375. [PMID: 33283898 DOI: 10.1002/ardp.202000375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
New imidazolinone-based benzenesulfonamides 3a-e and 4a-e were synthesized in three steps and their chemical structures were confirmed by 1 H NMR (nuclear magnetic resonance), 13 C NMR, and high-resolution mass spectrometry. The benzenesulfonamides used were sulfacetamide (3a, 4a), sulfaguanidine (3b, 4b), sulfanilamide (3c, 4c), sulfadiazine (3d, 4d), sulfamerazine (3e), and sulfathiazole (4e). The compounds were evaluated against carbonic anhydrase (CA) and acetylcholinesterase (AChE) enzymes to obtain possible drug candidate/s. The lead compounds of the series were 3a and 4a against human CA (hCA) I, whereas 3d and 4a were leads against hCA II in terms of Ki values. Series 4 includes more effective CAs inhibitors than series 3 (except 3d). Series 4 compounds having a nitro group (except 4d) were 3.3-4.8 times more selective inhibitors than their corresponding analogues 3a-d in series 3, in which hydrogen was located in place of the nitro group, by considering Ki values against hCA II. Compounds 3c and 4c, where the sulfanilamide moiety is available, were the leads in terms of AChE inhibition with the lowest Ki values. The use of secondary sulfonamides was a more effective modification on CA inhibition, whereas the primary sulfonamide was the effective substitution in terms of AChE inhibitory potency.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
25
|
Mishra CB, Kumari S, Angeli A, Bua S, Mongre RK, Tiwari M, Supuran CT. Discovery of Potent Carbonic Anhydrase Inhibitors as Effective Anticonvulsant Agents: Drug Design, Synthesis, and In Vitro and In Vivo Investigations. J Med Chem 2021; 64:3100-3114. [PMID: 33721499 DOI: 10.1021/acs.jmedchem.0c01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two sets of benzenesulfonamide-based effective human carbonic anhydrase (hCA) inhibitors have been developed using the tail approach. The inhibitory action of these novel molecules was examined against four isoforms: hCA I, hCA II, hCA VII, and hCA XII. Most of the molecules disclosed low to medium nanomolar range inhibition against all tested isoforms. Some of the synthesized derivatives selectively inhibited the epilepsy-involved isoforms hCA II and hCA VII, showing low nanomolar affinity. The anticonvulsant activity of selected sulfonamides was assessed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (sc-PTZ) in vivo models of epilepsy. These potent CA inhibitors effectively inhibited seizures in both epilepsy models. The most effective compounds showed long duration of action and abolished MES-induced seizures up to 6 h after drug administration. These sulfonamides were found to be orally active anticonvulsants, being nontoxic in neuronal cell lines and in animal models.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Shikha Kumari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| | - Raj Kumar Mongre
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Manisha Tiwari
- Bio-Organic Chemistry Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence 50019, Italy
| |
Collapse
|
26
|
Synthesis, characterization and bioactivities of dative donor ligand N-heterocyclic carbene (NHC) precursors and their Ag(I)NHC coordination compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
TuĞrak M, GÜl Hİ, Anil B, GÜlÇİn İ. Synthesis and pharmacological effects of novel benzenesulfonamides carrying benzamide moiety as carbonic anhydrase and acetylcholinesterase inhibitors. Turk J Chem 2020; 44:1601-1609. [PMID: 33488256 PMCID: PMC7763114 DOI: 10.3906/kim-2007-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
N
-(1-(4-Methoxyphenyl)-3-oxo-3-((4-(
N
-(substituted)sulfamoyl)phenyl)amino)prop-1-en-1-yl)benzamides
3a – g
were designed since sulfonamide and benzamide pharmacophores draw great attention in novel drug design due to their wide range of bioactivities including acetylcholinesterase (AChE) and human carbonic anhydrase I and II (hCA I and hCA II) inhibitory potencies. Structure elucidation of the compounds was carried out by 1H NMR, 13C NMR, and HRMS spectra. In vitro enzyme assays showed that the compounds had significant inhibitory potential against hCA I, hCA II, and AChE enzymes at nanomolar levels. Ki values were in the range of 4.07 ± 0.38 – 29.70 ± 3.18 nM for hCA I and 10.68 ± 0.98 – 37.16 ± 7.55 nM for hCA II while Ki values for AChE were in the range of 8.91 ± 1.65 – 34.02 ± 5.90 nM. The most potent inhibitors
3g
(Ki = 4.07 ± 0.38 nM, hCA I),
3c
(Ki = 10.68 ± 0.98 nM, hCA II
)
, and
3f
(Ki = 8.91 ± 1.65 nM, AChE) can be considered as lead compounds of this study with their promising bioactivity results. Secondary sulfonamides showed promising enzyme inhibitory effects on AChE while primary sulfonamide derivative was generally effective on hCA I and hCA II isoenzymes.
Collapse
Affiliation(s)
- Mehtap TuĞrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Halise İnci GÜl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Barış Anil
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| | - İlhami GÜlÇİn
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| |
Collapse
|
28
|
Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg Chem 2020; 105:104400. [DOI: 10.1016/j.bioorg.2020.104400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
|
29
|
Evaluation of Cytotoxic Properties of N,N'-bis[(1-aryl-3-heteroaryl)propylidene]-hydrazine dihydrochlorides. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Gülçin İ, Trofimov B, Kaya R, Taslimi P, Sobenina L, Schmidt E, Petrova O, Malysheva S, Gusarova N, Farzaliyev V, Sujayev A, Alwasel S, Supuran CT. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg Chem 2020; 103:104171. [PMID: 32891857 DOI: 10.1016/j.bioorg.2020.104171] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Sulfur-containing pyrroles (1-3), tris(2-pyridyl)phosphine(selenide) sulfide (4-5) and 4-benzyl-6-(thiophen-2-yl)pyrimidin-2-amine (6) were synthesized and characterized by elemental analysis, IR and NMR spectra. In this study, the synthesized compounds of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) were evaluated against the human erythrocyte carbonic anhydrase I, and II isoenzymes, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase enzymes. The synthesized heterocyclic compounds showed IC50 values in range of 33.32-60.79 nM against hCA I, and 37.05-66.64 nM against hCA II closely associated with various physiological and pathological processes. On the other hand, IC50 values were found in range of 13.13-22.21 nM against AChE, 0.54-31.22 nM against BChE, and 13.51-26.55 nM against α-glycosidase as a hydrolytic enzyme. As a result, nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds (1-6) demonstrated potent inhibition profiles against indicated metabolic enzymes. Therefore, we believe that these results may contribute to the development of new drugs particularly in the treatment of some global disorders including glaucoma, Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- İlhami Gülçin
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey.
| | - Boris Trofimov
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Ruya Kaya
- Atatürk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum, Turkey; Central Research and Application Laboratory, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Lyubov Sobenina
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Elena Schmidt
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga Petrova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Svetlana Malysheva
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina Gusarova
- Irkutsk Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Vagif Farzaliyev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Afsun Sujayev
- Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, 1029 Baku, Azerbaijan
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy; Neurofarba Department and Laboratorio di Chimica Bioinorganica Universita' degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem 2020; 100:103897. [PMID: 32413628 DOI: 10.1016/j.bioorg.2020.103897] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Some metabolic enzyme inhibitors can be used in the treatment of many diseases. Therefore, synthesis and determination of alternative inhibitors are essential. In this study, the inhibition effect of newly synthesized compounds on carbonic anhydrase (cytosolic isoforms, hCA I and hCA II), α-glycosidase (α-GLY), and acetylcholinesterase (AChE) were investigated. The possible binding mechanism of the compounds with a high inhibitory effect on the active site of the enzyme was demonstrated by molecular docking method. We investigated the inhibition effects of novel synthesized compounds (MZ1-MZ11) on metabolic enzymes such as α-GLY, AChE, and hCA I and II. The compound MZ6 for AChE, MZ8 for CA I and CA II and MZ7 for α-GLY showed a very active inhibition profile (KIs 51.67 ± 4.76 for hCA I, 40.35 ± 5.74 nM for hCA II, 41.74 ± 8.08 nM for α-GLY and 335.76 ± 46.91 nM for AChE). The novel synthesized compounds (MZ1-MZ11) have a higher enzyme (α-GLY, AChE, hCA I, and II) inhibitory potential than ACR, TAC, and AZA, respectively. The compounds may have the potential to be used as alternative medicines after further research in the treatment of many diseases such as diabetes, Alzheimer's disease, heart failure, ulcer, and epilepsy.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan 24100, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın 74100, Turkey
| | - Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa 63300, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa 63290, Turkey
| |
Collapse
|
32
|
Potla KM, Poojith N, Osório FA, Valverde C, Chinnam S, Suchetan P, Vankayalapati S. An analysis of spectroscopic, computational and biological activity studies of L-shaped sulfamoylbenzoic acid derivatives: A third order nonlinear optical material. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Türkan F, Calimli MH, Kanberoğlu GS, Karaman M. Inhibition effects of isoproterenol, chlorpromazine, carbamazepine, tamoxifen drugs on glutathione S-transferase, cholinesterases enzymes and molecular docking studies. J Biomol Struct Dyn 2020; 39:3277-3284. [PMID: 32362189 DOI: 10.1080/07391102.2020.1763200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and glutathione S-transferases (GSTs) have been a very crucial issue for pharmacological treatments of several disasters. Herein, we investigated inhibition effects of Tamoxifen (TAM), Isoprenaline (ISO), Chlorpromazines (CPZ) and Carbamazepine (CBZ) on GST, AChE, BChE and then molecular structures and active sides of the tested drugs by molecular docking process. The enzyme activity results showed that nearly the whole tested drugs inhibited GST, BChE, AChE efficiently. Chlorpromazine was found to be the best inhibitor for the GST enzyme and the Ki value of this drug was found to be 42.83 ± 8.52 nM. Besides, Isoproterenol drug with the Ki value of 51.80 ± 9.44 nM was found to be the most effective inhibitor on the AChE enzyme. Molecular docking studies showed that the receptor-binding sites of GST, AChE, and BChE were found to 1.069, 1.090, and 1.15 of Sitecore and 0.992, 1.113, and 1.217 of Dscore, respectively. The method was validated by doing validation studies and these validations revealed that re-docked ligands located a very closed position with co-crystallized ligand into the active site for all receptors. Calculation studies for determining the possible enzyme inhibition mechanism with the used drugs revealed that amino and aromatic ring in the structure of the drugs used are effective in inhibition reactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Igdir University, Igdir, Turkey
| | | | | | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
34
|
Ishaq M, Taslimi P, Shafiq Z, Khan S, Ekhteiari Salmas R, Zangeneh MM, Saeed A, Zangeneh A, Sadeghian N, Asari A, Mohamad H. Synthesis, bioactivity and binding energy calculations of novel 3-ethoxysalicylaldehyde based thiosemicarbazone derivatives. Bioorg Chem 2020; 100:103924. [PMID: 32442818 DOI: 10.1016/j.bioorg.2020.103924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 01/21/2023]
Abstract
In recent decade, the entrance of α-N-heterocyclic thiosemicarbazones derivates (Triapne, COTI-2 and DpC) in clinical trials for cancer and HIV-1 has vastly increased the interests of medicinal chemists towards this class of organic compounds. In the given study, a series of eighteen new (3a-r) 3-ethoxy salicylaldehyde-based thiosemicarbazones (TSC), bearing aryl and cycloalkyl substituents, were synthesized and assayed for their pharmacological potential against carbonic anhydrases (hCA I and hCA II), cholinesterases (AChE and BChE) and α-glycosidase. The hCA I isoform was inhibited by these novel 3-ethoxysalicylaldehyde thiosemicarbazone derivatives (3a-r) in low nanomolar levels, the Ki of which differed between 144.18 ± 26.74 and 454.92 ± 48.32 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 110.54 ± 14.05 to 444.12 ± 36.08 nM. Also, these novel derivatives (3a-r) effectively inhibited AChE, with Ki values in the range of 385.38 ± 45.03 to 983.04 ± 104.64 nM. For BChE was obtained with Ki values in the range of 400.21 ± 35.68 to 1003.02 ± 154.27 nM. For α-glycosidase the most effective Ki values of 3l, 3n, and 3q were with Ki values of 12.85 ± 1.05, 16.03 ± 2.84, and 19.16 ± 2.66 nM, respectively. Moreover, the synthesized TCSs were simulated using force field methods whereas the binding energies of the selected compounds were estimated using MM-GBSA method. The findings indicate the present novel 3-ethoxy salicylaldehyde-based thiosemicarbazones to be excellent hits for pharmaceutical applications.
Collapse
Affiliation(s)
- Muhammad Ishaq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Samra Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Asnuzilawati Asari
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
35
|
Tugrak M, Gul HI, Sakagami H, Gulcin I. Synthesis, cytotoxic, and carbonic anhydrase inhibitory effects of new 2‐(3‐(4‐methoxyphenyl)‐5‐(aryl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl)benzo[d]thiazole derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Ataturk University Erzurum Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Ataturk University Erzurum Turkey
| | - Hiroshi Sakagami
- Division of PharmacologyMeikai University Research Institute of Odontology Sakado Japan
| | - Ilhami Gulcin
- Faculty of Science, Department of ChemistryAtaturk University Erzurum Turkey
| |
Collapse
|
36
|
Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg Chem 2020; 96:103627. [DOI: 10.1016/j.bioorg.2020.103627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
|
37
|
Bozkurt E, Gul HI. Selective fluorometric “Turn-off” sensing for Hg2+ with pyrazoline compound and its application in real water sample analysis. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Benzimidazole derivatives as potent and isoform selective tumor-associated carbonic anhydrase IX/XII inhibitors. Bioorg Chem 2019; 95:103544. [PMID: 31915112 DOI: 10.1016/j.bioorg.2019.103544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023]
Abstract
We describe the synthesis of a series of 2-arylbenzimidazole derivatives bearing sulfonamide functionality (4a-d, 7a-c and 10) as well as hydroxamic acid (15a-b), carboxylic acid (16a-b), carboxamide (17a-b) and boronic acid (22a-b and 26) functionalities, which act as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors. The newly synthesized benzimidazole derivatives were evaluated against 4 physiologically relevant CA isoforms (hCA I, II, IX, and XII), and especially the sulfonamide-containing benzimidazoles demonstrated intriguing inhibitory activity against tumor associated CA IX and XII with KI values in the range of 5.2-29.3 nM and 9.9-41.7 nM, respectively. Notably, compound 4c was the most potent and selective CA IX (KI = 6.6 nM) and XII (KI = 9.9 nM) inhibitor with a significant selectivity ratio over cytosolic CA I and II isoforms in the range of 3.4-25.2. In addition, compounds having hydroxamic acid (15a-b) or carboxylic acid (16a-b) functionalities resulted in greater selectivity ratios for CA IX/XII over CAI/II in the range of 4.1-121.5 although with KI values in lower micromolar potency (KIs = 0.36-0.85 μM for CA IX/XII).
Collapse
|
39
|
Bozkurt E, Gul HI. Deciphering binding mechanism between bovine serum albumin and new pyrazoline compound K4. LUMINESCENCE 2019; 35:534-541. [DOI: 10.1002/bio.3762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 12/10/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ebru Bozkurt
- Programme of Occupational Health and Safety, Erzurum Vocational Training SchoolAtaturk University Erzurum Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAtaturk University Erzurum Turkey
| |
Collapse
|
40
|
Sujayev A, Taslimi P, Kaya R, Safarov B, Aliyeva L, Farzaliyev V, Gulçin İ. Synthesis, characterization and biological evaluation ofN‐substituted triazinane‐2‐thiones and theoretical–experimental mechanism of condensation reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of AdditivesInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences 1029 , Baku Azerbaijan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University 74100 , Bartin Turkey
| | - Ruya Kaya
- Department of Chemistry, Faculty of SciencesAtaturk University 25240 , Erzurum Turkey
- Central Research and Application LaboratoryAgri Ibrahim Cecen University 04100 , Agri Turkey
| | - Bahruz Safarov
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of AdditivesInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences 1029 , Baku Azerbaijan
| | - Lala Aliyeva
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of AdditivesInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences 1029 , Baku Azerbaijan
| | - Vagif Farzaliyev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of AdditivesInstitute of Chemistry of Additives, Azerbaijan National Academy of Sciences 1029 , Baku Azerbaijan
| | - İlhami Gulçin
- Department of Chemistry, Faculty of SciencesAtaturk University 25240 , Erzurum Turkey
| |
Collapse
|
41
|
Bilginer S, Gul HI, Erdal FS, Sakagami H, Levent S, Gulcin I, Supuran CT. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2( 3H)-benzoxazolones. J Enzyme Inhib Med Chem 2019; 34:1722-1729. [PMID: 31576761 PMCID: PMC6781194 DOI: 10.1080/14756366.2019.1670657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, new chalcone compounds having the chemical structure of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones (1-8) were synthesised and were characterised by 1H-NMR, 13 C-NMR, and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity results pointed out that compound 4, 6-[3-(4-trifluoromethylphenyl)-2-propenoyl]-3H-benzoxazol-2-one, showed the highest cytotoxicity (CC50) and potency-selectivity expression (PSE) value, and thus can be considered as a lead compound of this study. According to the CA inhibitory results, IC50 values of the compounds 1-8 towards hCA I were in the range of 29.74-69.57 µM, while they were in the range of 18.14 - 48.46 µM towards hCA II isoenzyme. Ki values of the compounds 1-8 towards hCA I were in the range of 28.37 ± 6.63-70.58 ± 6.67 µM towards hCA I isoenzyme and they were in the range of 10.85 ± 2.14 - 37.96 ± 2.36 µM towards hCA II isoenzyme.
Collapse
Affiliation(s)
- Sinan Bilginer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Feyza Sena Erdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Hiroshi Sakagami
- School of Dentistry, Meikai University Research Institute of Odontology (M-RIO), Meikai University, Sakado, Japan
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
42
|
Yamali C, Gul HI, Ece A, Bua S, Angeli A, Sakagami H, Sahin E, Supuran CT. Synthesis, biological evaluation and in silico modelling studies of 1,3,5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorg Chem 2019; 92:103222. [PMID: 31499260 DOI: 10.1016/j.bioorg.2019.103222] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023]
Abstract
Inhibition of carbonic anhydrases (CAs, EC 4.2.1.1) has clinical importance for the treatment of several diseases. They participate in crucial regulatory mechanisms for balancing intracellular and extracellular pH of the cells. Among CA isoforms, selective inhibition of hCA IX has been linked to decreasing of cell growth for both primary tumors and metastases. The discovery of novel CA inhibitors as anticancer drug candidates is a current topic in medicinal chemistry. 1,3,5-Trisubstituted pyrazoles carrying benzenesulfonamide were evaluated against physiologically abundant cytosolic hCA I and hCA II and trans-membrane, tumor-associated hCA IX isoforms by a stopped-flow CO2 hydrase method. Their in vitro cytotoxicities were screened against human oral squamous cell carcinoma (OSCC) cell lines (HSC-2) and human mesenchymal normal oral cells (HGF) via 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) test. Compounds 6, 8, 9, 11, and 12 showed low nanomolar hCA II inhibitory potency with Ki < 10 nM, whereas compounds 9 and 12 displayed Ki < 10 nM against hCA IX isoenzyme when compared with reference Acetazolamide (AZA). Compound 9, 4-(3-(hydrazinecarbonyl)-5-(4-nitrophenyl)-1H-pyrazol-1-yl)benzenesulfonamide, can be considered as the most selective hCA IX inhibitor over off-target cytosolic isoenzymes hCA I and hCA II with the lowest Ki value of 2.3 nM and selectivity ratios of 3217 (hCA I/hCA IX) and 3.9 (hCA II/hCA IX). Isoform selectivity profiles were also discussed using in silico modelling. Cytotoxicity results pointed out that compounds 5 (CC50 = 37.7 μM) and 11 (CC50 = 58.1 μM) can be considered as lead cytotoxic compounds since they were more cytotoxic than 5-Fluorouracil (5-FU) and Methotrexate (MTX).
Collapse
Affiliation(s)
- Cem Yamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Silvia Bua
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama 350-0283, Japan
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
43
|
El-Kardocy A, Mustafa M, Ahmed ER, Mohamady S, Mostafa YA. Aryl azide-sulfonamide hybrids induce cellular apoptosis: synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02438-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Topal F. Inhibition profiles of Voriconazole against acetylcholinesterase, α-glycosidase, and human carbonic anhydrase I and II isoenzymes. J Biochem Mol Toxicol 2019; 33:e22385. [PMID: 31478295 DOI: 10.1002/jbt.22385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
In this work, the inhibitory activity of Voriconazole was measured against some metabolic enzymes, including human carbonic anhydrase (hCA) I and II isoenzymes, acetylcholinesterase (AChE), and α-glycosidase; the results were compared with standard compounds including acetazolamide, tacrine, and acarbose. Half maximal inhibition concentration (IC50 ) values were obtained from the enzyme activity (%)-[Voriconazole] graphs, whereas Ki values were calculated from the Lineweaver-Burk graphs. According to the results, the IC50 value of Voriconazole was 40.77 nM for α-glycosidase, while the mean inhibition constant (Ki ) value was 17.47 ± 1.51 nM for α-glycosidase. The results make an important contribution to drug design and have pharmacological applications. In addition, the Voriconazole compound demonstrated excellent inhibitory effects against AChE and hCA isoforms I and II. Voriconazole had Ki values of 29.13 ± 3.57 nM against hCA I, 15.92 ± 1.90 nM against hCA II, and 10.50 ± 2.46 nM against AChE.
Collapse
Affiliation(s)
- Fevzi Topal
- Department of Chemical and Chemical Processing Technologies, Laboratory Technology Program, Gumushane Vocational School, Gumushane University, Gumushane, Turkey
| |
Collapse
|
45
|
New phenolic Mannich bases with piperazines and their bioactivities. Bioorg Chem 2019; 90:103057. [DOI: 10.1016/j.bioorg.2019.103057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023]
|
46
|
Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg Chem 2019; 91:103134. [PMID: 31374523 DOI: 10.1016/j.bioorg.2019.103134] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022]
Abstract
In this work, the synthesis, crystal structure, characterization, and enzyme inhibition effects of the novel a series of 2-aminopyridine liganded Pd(II) N-heterocyclic carbene (NHC) complexes were examined. These complexes of the Pd-based were synthesized from PEPPSI complexes and 2-aminopyridine. The novel complexes were characterized by using 13C NMR, 1H NMR, elemental analysis, and FTIR spectroscopy techniques. Also, crystal structures of the two compounds were recorded by using single-crystal X-ray diffraction assay. Also, these complexes were tested toward some metabolic enzymes like α-glycosidase, aldose reductase, butyrylcholinesterase, acetylcholinesterase enzymes, and carbonic anhydrase I, and II isoforms. The novel 2-aminopyridine liganded (NHC)PdI2(2-aminopyridine) complexes (1a-i) showed Ki values of in range of 5.78 ± 0.33-22.51 ± 8.59 nM against hCA I, 13.77 ± 2.21-30.81 ± 4.87 nM against hCA II, 0.44 ± 0.08-1.87 ± 0.11 nM against AChE and 3.25 ± 0.34-12.89 ± 4.77 nM against BChE. Additionally, we studied the inhibition effect of these derivatives on aldose reductase and α-glycosidase enzymes. For these compounds, compound 1d showed maximum inhibition effect against AR with a Ki value of 360.37 ± 55.82 nM. Finally, all compounds were tested for the inhibition of α-glycosidase enzyme, which recorded efficient inhibition profiles with Ki values in the range of 4.44 ± 0.65-12.67 ± 2.50 nM against α-glycosidase.
Collapse
|
47
|
Bayindir S, Caglayan C, Karaman M, Gülcin İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg Chem 2019; 90:103096. [PMID: 31284100 DOI: 10.1016/j.bioorg.2019.103096] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022]
Abstract
Recently, inhibition effects of enzymes such as acetylcholinesterase (AChE) and carbonic anhydrase (CA) has appeared as a promising approach for pharmacological intervention in a variety of disorders such as epilepsy, Alzheimer's disease and obesity. For this purpose, novel N-substituted rhodanine derivatives (RhAs) were synthesized by a green synthetic approach over one-pot reaction. Following synthesis the novel compounds, RhAs derivatives were tested against AChE and cytosolic carbonic anhydrase I, and II (hCAs I, and II) isoforms. As a result of this study, inhibition constant (Ki) were found in the range of 66.35 ± 8.35 to 141.92 ± 12.63 nM for AChE, 43.55 ± 14.20 to 89.44 ± 24.77 nM for hCA I, and 16.97 ± 1.42 to 64.57 ± 13.27 nM for hCA II, respectively. Binding energies were calculated with docking studies as -5.969, -5.981, and -9.121 kcal/mol for hCA I, hCA II, and AChE, respectively.
Collapse
Affiliation(s)
- Sinan Bayindir
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000-Bingöl, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000-Bingöl, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, 79000-Kilis, Turkey
| | - İlhami Gülcin
- Department of Chemistry, Faculty of Sciences, Atatürk University, 25240-Erzurum, Turkey.
| |
Collapse
|
48
|
Tugrak M, Gul HI, Bandow K, Sakagami H, Gulcin I, Ozkay Y, Supuran CT. Synthesis and biological evaluation of some new mono Mannich bases with piperazines as possible anticancer agents and carbonic anhydrase inhibitors. Bioorg Chem 2019; 90:103095. [PMID: 31288135 DOI: 10.1016/j.bioorg.2019.103095] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
New mono Mannich bases, (2-(4-hydroxy-3-((4-substituephenylpiperazin-1-yl)methyl)benzylidene)-2,3-dihydro-1H-inden-1-one), were prepared to evaluate their cytotoxic/anticancer properties and also their inhibitory effects on human carbonic anhydrase I and II isoenzymes (hCA I and II). Amine part was changed as [N-phenylpiperazine (1), N-benzylpiperazine (2), 1-(2-fluorophenyl)piperazine (3), 1-(4-fluorophenyl)piperazine (4), 1-(2-methoxyphenyl)piperazine (5)]. The structure of the synthesized compounds was characterized by 1H NMR, 13C NMR and HRMS spectra. Cytotoxicity results of the series pointed out that the compound 4 had the highest tumor selectivity value (TS: 59.4) possibly by inducing necrotic cell death in series. Additionally, all compounds synthesized showed a good inhibition profile towards hCA I and II isoenzymes with the Ki values between 29.6 and 58.4 nM and 38.1-69.7 nM, respectively. These values were lower than the reference compound AZA. However, it seems that the compounds 4 and 2 can be considered as lead compounds of CA studies with the lowest Ki values in series for further designs.
Collapse
Affiliation(s)
- Mehtap Tugrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Halise Inci Gul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey.
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Ilhami Gulcin
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienza Farmaceutiche e Nutraceutiche, Universita egli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
49
|
Abdel-Aziz AAM, El-Azab AS, Bua S, Nocentini A, Abu El-Enin MA, Alanazi MM, AlSaif NA, Hefnawy MM, Supuran CT. Design, synthesis, and carbonic anhydrase inhibition activity of benzenesulfonamide-linked novel pyrazoline derivatives. Bioorg Chem 2019; 87:425-431. [PMID: 30921744 DOI: 10.1016/j.bioorg.2019.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrases (CA, EC 4.2.1.1) are Zinc metalloenzymes and are present throughout most living organisms. Among the catalytically active isoforms are the cytosolic CA I and II, and tumor-associated CA IX and CA XII. The carbonic anhydrase (CA) inhibitory activities of newly synthesized pyrazoline-linked benzenesulfonamides 18-33 against human CA (hCA) isoforms I, II, IX, and XII were measured and compared with that of acetazolamide (AAZ), a standard inhibitor. Potent inhibitory activity against hCA I was exerted by compounds 18-25, with inhibition constant (KI) values of 87.8-244.1 nM, which were greater than that of AAZ (KI, 250.0 nM). Compounds 19, 21, 22, 29, 30, and 32 were proven to have inhibitory activities against hCA IX with KI values (5.5-37.0 nM) that were more effective than or nearly equal to that of AAZ (KI, 25.0 nM). Compounds 20-22, and 30 exerted potent inhibitory activities (KIs, 7.1-10.1 nM) against hCA XII, in comparison with AAZ (KI, 5.7 nM).
Collapse
Affiliation(s)
- Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Silvia Bua
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohamed A Abu El-Enin
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A AlSaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Università degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
50
|
Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem 2019; 86:316-321. [DOI: 10.1016/j.bioorg.2019.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 01/01/2023]
|