1
|
Leite JP, Costa-Rodrigues D, Gales L. Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data. Molecules 2024; 29:895. [PMID: 38398647 PMCID: PMC10893244 DOI: 10.3390/molecules29040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Amyloidosis is a group of protein misfolding diseases, which include spongiform encephalopathies, Alzheimer's disease and transthyretin (TTR) amyloidosis; all of them are characterized by extracellular deposits of an insoluble fibrillar protein. TTR amyloidosis is a highly debilitating and life-threatening disease. Patients carry less stable TTR homotetramers that are prone to dissociation into non-native monomers, which in turn rapidly self-assemble into oligomers and, ultimately, amyloid fibrils. Liver transplantation to induce the production of wild-type TTR was the only therapeutic strategy until recently. A promising approach to ameliorate transthyretin (TTR) amyloidosis is based on the so-called TTR kinetic stabilizers. More than 1000 TTR stabilizers have already been tested by many research groups, but the diversity of experimental techniques and conditions used hampers an objective prioritization of the compounds. One of the most reliable and unambiguous techniques applied to determine the structures of the TTR/drug complexes is X-ray diffraction. Most of the potential inhibitors bind in the TTR channel and the crystal structures reveal the atomic details of the interaction between the protein and the compound. Here we suggest that the stabilization effect is associated with a compaction of the quaternary structure of the protein and propose a scoring function to rank drugs based on X-ray crystallography data.
Collapse
Affiliation(s)
- José P. Leite
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Diogo Costa-Rodrigues
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Luís Gales
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
4
|
Omega-3 PUFAs as a Dietary Supplement in Senile Systemic Amyloidosis. Nutrients 2023; 15:nu15030749. [PMID: 36771455 PMCID: PMC9921273 DOI: 10.3390/nu15030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3 poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other marine organisms. EPA and DHA are commercially available as dietary supplements and are considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as β-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context, we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.
Collapse
|
5
|
Ciccone L, Piragine E, Brogi S, Camodeca C, Fucci R, Calderone V, Nencetti S, Martelli A, Orlandini E. Resveratrol-like Compounds as SIRT1 Activators. Int J Mol Sci 2022; 23:ijms232315105. [PMID: 36499460 PMCID: PMC9738298 DOI: 10.3390/ijms232315105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The sirtuin 1 (SIRT1) activator resveratrol has emerged as a promising candidate for the prevention of vascular oxidative stress, which is a trigger for endothelial dysfunction. However, its clinical use is limited by low oral bioavailability. In this work, we have applied a previously developed computational protocol to identify the most promising derivatives from our in-house chemical library of resveratrol derivatives. The most promising compounds in terms of SIRT1 activation and oral bioavailability, predicted in silico, were evaluated for their ability to activate the isolated SIRT1 enzyme. Then, we assessed the antioxidant effects of the most effective derivative, compound 3d, in human umbilical vein endothelial cells (HUVECs) injured with H2O2 100 µM. The SIRT1 activator 3d significantly preserved cell viability and prevented an intracellular reactive oxygen species increase in HUVECs exposed to the oxidative stimulus. Such effects were partially reduced in the presence of a sirtuin inhibitor, sirtinol, confirming the potential role of sirtuins in the activity of resveratrol and its derivatives. Although 3d appeared less effective than resveratrol in activating the isolated enzyme, the effects exhibited by both compounds in HUVECs were almost superimposable, suggesting a higher ability of 3d to cross cell membranes and activate the intracellular target SIRT1.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Raffaele Fucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
- Research Centre E. Piaggio, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Lee K, Kuczera K. Modulation of human transthyretin stability by the mutations at histidine 88 studied by free energy simulation. Proteins 2022; 90:1825-1836. [DOI: 10.1002/prot.26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung‐Hoon Lee
- Department of Biology Chowan University Murfreesboro North Carolina USA
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| |
Collapse
|
7
|
Antioxidant Quercetin 3-O-Glycosylated Plant Flavonols Contribute to Transthyretin Stabilization. CRYSTALS 2022. [DOI: 10.3390/cryst12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants are rich in secondary metabolites, which are often useful as a relevant source of nutraceuticals. Quercetin (QUE) is a flavonol aglycone able to bind Transthyretin (TTR), a plasma protein that under pathological conditions can lose its native structure leading to fibrils formation and amyloid diseases onset. Here, the dual nature of five quercetin 3-O-glycosylated flavonol derivatives, isolated from different plant species, such as possible binders of TTR and antioxidants, was investigated. The crystal structure of 3-O-β-D-galactopyranoside in complex with TTR was solved, suggesting that not only quercetin but also its metabolites can contribute to stabilizing the TTR tetramer.
Collapse
|
8
|
Ciccone L, Nencetti S, Camodeca C, Ortore G, Cuffaro D, Socci S, Orlandini E. Synthesis and Evaluation of Monoaryl Derivatives as Transthyretin Fibril Formation Inhibitors. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Dömling A, Neochoritis CG, Lei X, Thomaidi M, Angeli GK. Fluorene-Based Multicomponent Reactions. Synlett 2021. [DOI: 10.1055/a-1471-9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorene and fluorenone are privileged structures with extensive utility in both materials science and drug discovery. Here, we describe syntheses of those moieties through isocyanide-based multicomponent reactions (IMCRs) and the incorporation of the products in diverse and complex derivatives that can be further utilized. We performed six different IMCRs, based on the dual functionality of 9-isocyano-9H-fluorene, and we describe 23 unprecedented adducts.
Collapse
Affiliation(s)
| | | | - Xiaofang Lei
- Department of Chemistry, University of Crete
- Department of Pharmacy, Drug Design Group, University of Groningen
| | | | | |
Collapse
|
10
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
11
|
Cotrina EY, Oliveira Â, Leite JP, Llop J, Gales L, Quintana J, Cardoso I, Arsequell G. Repurposing Benzbromarone for Familial Amyloid Polyneuropathy: A New Transthyretin Tetramer Stabilizer. Int J Mol Sci 2020; 21:E7166. [PMID: 32998442 PMCID: PMC7583827 DOI: 10.3390/ijms21197166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein involved in human amyloidosis, including familial amyloid polyneuropathy (FAP). Discovering small-molecule stabilizers of the TTR tetramer is a therapeutic strategy for these diseases. Tafamidis, the only approved drug for FAP treatment, is not effective for all patients. Herein, we discovered that benzbromarone (BBM), a uricosuric drug, is an effective TTR stabilizer and inhibitor against TTR amyloid fibril formation. BBM rendered TTR more resistant to urea denaturation, similarly to iododiflunisal (IDIF), a very potent TTR stabilizer. BBM competes with thyroxine for binding in the TTR central channel, with an IC50 similar to IDIF and tafamidis. Results obtained by isothermal titration calorimetry (ITC) demonstrated that BBM binds TTR with an affinity similar to IDIF, tolcapone and tafamidis, confirming BBM as a potent binder of TTR. The crystal structure of the BBM-TTR complex shows two molecules binding deeply in the thyroxine binding channel, forming strong intermonomer hydrogen bonds and increasing the stability of the TTR tetramer. Finally, kinetic analysis of the ability of BBM to inhibit TTR fibrillogenesis at acidic pH and comparison with other stabilizers revealed that benzbromarone is a potent inhibitor of TTR amyloidogenesis, adding a new interesting scaffold for drug design of TTR stabilizers.
Collapse
Affiliation(s)
- Ellen Y. Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| | - Ângela Oliveira
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Pedro Leite
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain;
| | - Luis Gales
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain;
| | - Isabel Cardoso
- IBMC—Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal; (Â.O.); (J.P.L.); (L.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013 Porto, Portugal
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain;
| |
Collapse
|
12
|
Ciccone L, Nencetti S, Tonali N, Fruchart-Gaillard C, Shepard W, Nuti E, Camodeca C, Rossello A, Orlandini E. Monoaryl derivatives as transthyretin fibril formation inhibitors: Design, synthesis, biological evaluation and structural analysis. Bioorg Med Chem 2020; 28:115673. [DOI: 10.1016/j.bmc.2020.115673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
|
13
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
14
|
Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4'-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors. Molecules 2020; 25:molecules25092213. [PMID: 32397334 PMCID: PMC7248964 DOI: 10.3390/molecules25092213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
The 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridine structure is proposed as a novel chemical scaffold for the design of new transthyretin (TTR) fibrillogenesis inhibitors. In the frame of a proof-of-principle exploration, four chiral 3,3',5,5'-tetrachloro-2-iodo-2'-substituted-4,4'- bipyridines were rationally designed and prepared from a simple trihalopyridine in three steps, including a Cu-catalysed Finkelstein reaction to introduce iodine atoms on the heteroaromatic scaffold, and a Pd-catalysed coupling reaction to install the 2'-substituent. The corresponding racemates, along with other five chiral 4,4'-bipyridines containing halogens as substituents, were enantioseparated by high-performance liquid chromatography in order to obtain pure enantiomer pairs. All stereoisomers were tested against the amyloid fibril formation (FF) of wild type (WT)-TTR and two mutant variants, V30M and Y78F, in acid mediated aggregation experiments. Among the 4,4'-bipyridine derivatives, interesting inhibition activity was obtained for both enantiomers of the 3,3',5,5'-tetrachloro-2'-(4-hydroxyphenyl)-2-iodo-4,4'-bipyridine. In silico docking studies were carried out in order to explore possible binding modes of the 4,4'-bipyridine derivatives into the TTR. The gained results point out the importance of the right combination of H-bond sites and the presence of iodine as halogen-bond donor. Both experimental and theoretical evidences pave the way for the utilization of the iodinated 4,4'-bipyridine core as template to design new promising inhibitors of TTR amyloidogenesis.
Collapse
|
15
|
Ortore G, Martinelli A. Identification of Transthyretin Fibril Formation Inhibitors Using Structure-Based Virtual Screening. ChemMedChem 2017; 12:1327-1334. [PMID: 28422428 DOI: 10.1002/cmdc.201700051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/17/2017] [Indexed: 11/09/2022]
Abstract
Transthyretin (TTR) is the primary carrier for thyroxine (T4 ) in cerebrospinal fluid and a secondary carrier in blood. TTR is a stable homotetramer, but certain factors, genetic or environmental, could promote its degradation to form amyloid fibrils. A docking study using crystal structures of wild-type TTR was planned; our aim was to design new ligands that are able to inhibit TTR fibril formation. The computational protocol was thought to overcome the multiple binding modes of the ligands induced by the peculiarity of the TTR binding site and by the pseudosymmetry of the site pockets, which generally weaken such structure-based studies. Two docking steps, one that is very fast and a subsequent step that is more accurate, were used to screen the Aldrich Market Select database. Five compounds were selected, and their activity toward inhibiting TTR fibril formation was assessed. Three compounds were observed to be actives, two of which have the same potency as the positive control, and the other was found to be a promising lead compound. These results validate a computational protocol that is able to archive information on the key interactions between database compounds and TTR, which is valuable for supporting further studies.
Collapse
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Farmacia, Università di Pisa, V. Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|