1
|
Improving the selectivity of 3-amidinophenylalanine-derived matriptase inhibitors. Eur J Med Chem 2022; 238:114437. [DOI: 10.1016/j.ejmech.2022.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
2
|
Zuo K, Qi Y, Yuan C, Jiang L, Xu P, Hu J, Huang M, Li J. Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer Metastasis Rev 2020; 38:507-524. [PMID: 31471691 DOI: 10.1007/s10555-019-09802-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matriptase is a type II transmembrane serine protease, which has been suggested to play critical roles in numerous pathways of biological developments. Matriptase is the activator of several oncogenic proteins, including urokinase-type plasminogen activator (uPA), hepatocyte growth factor (HGF) and protease-activated receptor 2 (PAR-2). The activations of these matriptase substrates subsequently lead to the generation of plasmin, matrix metalloproteases (MMPs), and the triggers for many other signaling pathways related to cancer proliferation and metastasis. Accordingly, matriptase is considered an emerging target for the treatments of cancer. Thus far, inhibitors of matriptase have been developed as potential anti-cancer agents, which include small-molecule inhibitors, peptide-based inhibitors, and monoclonal antibodies. This review covers established literature to summarize the chemical and biochemical aspects, especially the inhibitory mechanisms and structure-activity relationships (SARs) of matriptase inhibitors with the goal of proposing the strategies for their future developments in anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Zuo
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Yingying Qi
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, People's Republic of China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| |
Collapse
|
3
|
Ali SM, Khan NA, Sagathevan K, Anwar A, Siddiqui R. Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express 2019; 9:95. [PMID: 31254123 PMCID: PMC6598926 DOI: 10.1186/s13568-019-0816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.
Collapse
Affiliation(s)
- Salwa Mansur Ali
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - K. Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| |
Collapse
|
4
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
5
|
Hinkes S, Wuttke A, Saupe SM, Ivanova T, Wagner S, Knörlein A, Heine A, Klebe G, Steinmetzer T. Optimization of Cyclic Plasmin Inhibitors: From Benzamidines to Benzylamines. J Med Chem 2016; 59:6370-86. [DOI: 10.1021/acs.jmedchem.6b00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Stefan Hinkes
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - André Wuttke
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Sebastian M. Saupe
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Teodora Ivanova
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Sebastian Wagner
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Anna Knörlein
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Andreas Heine
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| |
Collapse
|