1
|
Anders G, Hassiepen U, Theisgen S, Heymann S, Muller L, Panigada T, Huster D, Samsonov SA. The Intrinsic Pepsin Resistance of Interleukin-8 Can Be Explained from a Combined Bioinformatical and Experimental Approach. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:300-308. [PMID: 28113517 DOI: 10.1109/tcbb.2016.2614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interleukin-8 (IL-8, CXCL8) is a neutrophil chemotactic factor belonging to the family of chemokines. IL-8 was shown to resist pepsin cleavage displaying its high resistance to this protease. However, the molecular mechanisms underlying this resistance are not fully understood. Using our in-house database containing the data on three-dimensional arrangements of secondary structure elements from the whole Protein Data Bank, we found a striking structural similarity between IL-8 and pepsin inhibitor-3. Such similarity could play a key role in understanding IL-8 resistance to the protease pepsin. To support this hypothesis, we applied pepsin assays confirming that intact IL-8 is not degraded by pepsin in comparison to IL-8 in a denaturated state. Applying 1H-15N Heteronuclear Single Quantum Coherence NMR measurements, we determined the putative regions at IL-8 that are potentially responsible for interactions with the pepsin. The results obtained in this work contribute to the understanding of the resistance of IL-8 to pepsin proteolysis in terms of its structural properties.
Collapse
|
2
|
Reynolds SL, Pike RN, Mika A, Blom AM, Hofmann A, Wijeyewickrema LC, Kemp D, Fischer K. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Negl Trop Dis 2014; 8:e2872. [PMID: 24854034 PMCID: PMC4031079 DOI: 10.1371/journal.pntd.0002872] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.
Collapse
Affiliation(s)
- Simone L Reynolds
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Robert N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Angela Mika
- Diagnostics Development, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anna M Blom
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | | | - Dave Kemp
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katja Fischer
- Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
3
|
Kay J, Dunn BM. Substrate specificity and inhibitors of aspartic proteinases. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519209104651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Quantitative determination and localization of cathepsin D and its inhibitors. Folia Histochem Cytobiol 2010; 47:153-77. [PMID: 19995700 DOI: 10.2478/v10042-009-0073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A literature survey was performed of the methods of quantitative assessment of the activity and concentration of cathepsin D and its inhibitors. Usefulness of non-modified and modified proteins and synthetic peptides as measurement substrates was evaluated. The survey includes also chemical and immunochemical methods used to determine the distribution of cathepsin D and its inhibitors in cells and tissues.
Collapse
|
5
|
Ten Have A, Dekkers E, Kay J, Phylip LH, van Kan JAL. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. MICROBIOLOGY-SGM 2004; 150:2475-2489. [PMID: 15256589 DOI: 10.1099/mic.0.27058-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medium. A proportion of the enzyme activity remained in the extracellular glucan sheath. AP was also the only type of proteinase activity in fluid obtained from B. cinerea-infected tissue of apple, pepper, tomato and zucchini. Five B. cinerea genes encoding an AP were cloned and denoted Bcap1-5. Features of the encoded proteins are discussed. BcAP1, especially, has novel characteristics. A phylogenetic analysis was performed comprising sequences originating from different kingdoms. BcAP1 and BcAP5 did not cluster in a bootstrap-supported clade. BcAP2 clusters with vacuolar APs. BcAP3 and BcAP4 cluster with secreted APs in a clade that also contains glycosylphosphatidylinositol-anchored proteinases from Saccharomyces cerevisiae and Candida albicans. All five Bcap genes are expressed in liquid cultures. Transcript levels of Bcap1, Bcap2, Bcap3 and Bcap4 are subject to glucose and peptone repression. Transcripts from all five Bcap genes were detected in infected plant tissue, indicating that at least part of the AP activity in planta originates from the pathogen.
Collapse
Affiliation(s)
- Arjen Ten Have
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, PO Box 8025, 6700 EE Wageningen, The Netherlands
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, PO Box 8025, 6700 EE Wageningen, The Netherlands
| | - John Kay
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK
| | - Lowri H Phylip
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF10 3US, UK
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, PO Box 8025, 6700 EE Wageningen, The Netherlands
| |
Collapse
|
6
|
Affiliation(s)
- Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, USA.
| |
Collapse
|
7
|
Farley PC, Christeller JT, Sullivan ME, Sullivan PA, Laing WA. Analysis of the interaction between the aspartic peptidase inhibitor SQAPI and aspartic peptidases using surface plasmon resonance. J Mol Recognit 2002; 15:135-44. [PMID: 12203839 DOI: 10.1002/jmr.568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aspartic peptidase inhibitors, which are themselves proteins, are strong inhibitors (small inhibition constants) of some aspartic peptidases but not others. However, there have been no studies of the kinetics of the interaction between a proteinaceous aspartic peptidase inhibitor and aspartic peptidases. This paper describes an analysis of rate constants for the interaction between recombinant squash aspartic peptidase inhibitor (rSQAPI) and a panel of aspartic peptidases that have a range of inhibition constants for SQAPI. Purified rSQAPI completely inhibits pepsin at a 1:1 molar ratio of pepsin to rSQAPI monomer (inhibition constant 1 nM). The interaction of pepsin with immobilized rSQAPI, at pH values between 3.0 and 6.0, was monitored using surface plasmon resonance. Binding of pepsin to rSQAPI was slow (association rate constants ca 10(4)M (-1)s(-1)), but rSQAPI was an effective pepsin inhibitor because dissociation of the rSQAPI-pepsin complex was much slower (dissociation rate constants ca 10(-4)s(-1)), especially at low pH values. Similar results were obtained with a His-tagged rSQAPI. Strong inhibition (inhibition constant 3 nM) of one isoform (rSap4) of the family of Candida albicans-secreted aspartic peptidases was, as with pepsin, characterized by slow binding of rSap4 and slower dissociation of the rSap4-inhibitor complex. In contrast, weaker inhibition of the Glomerella cingulata-secreted aspartic peptidase (inhibition constant 7 nM) and the C. albicans rSap1 and Sap2 isoenzymes (inhibition constants 25 and 400 nM, respectively) was, in each case, characterized by a larger dissociation rate constant.
Collapse
Affiliation(s)
- Peter C Farley
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Girdwood K, Berry C. The disulphide bond arrangement in the major pepsin inhibitor PI-3 of Ascaris suum. FEBS Lett 2000; 474:253-4. [PMID: 10896483 DOI: 10.1016/s0014-5793(00)01589-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yasuda Y, Ikeda S, Sakai H, Tsukuba T, Okamoto K, Nishishita K, Akamine A, Kato Y, Yamamoto K. Role of N-glycosylation in cathepsin E. A comparative study of cathepsin E with distinct N-linked oligosaccharides and its nonglycosylated mutant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:383-91. [PMID: 10561578 DOI: 10.1046/j.1432-1327.1999.00863.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cathepsin E (CE), a nonlysosomal, intracellular aspartic proteinase, exists in several molecular forms that are N-glycosylated with high-mannose and/or complex-type oligosaccharides. To investigate the role of N-glycosylation on the catalytic properties and molecular stability of CE, both natural and recombinant enzymes with distinct oligosaccharides were purified from different sources. An N-glycosylation minus mutant, that was constructed by site-directed mutagenesis (by changing asparagine residues to glutamine and aspartic acid residues at positions 73 and 305 in potential N-glycosylation sites of rat CE) and expressed in normal rat kidney cells, was also purified to homogeneity from the cell extracts. The kinetic parameters of the nonglycosylated mutant were found to be essentially equivalent to those of natural enzymes N-glycosylated with either high-mannose or complex-type oligosaccharides. In contrast, the nonglycosylated mutant showed lower pH and thermal stabilities than the glycosylated enzymes. The nonglycosylated mutant exhibited particular sensitivity to conversion to a monomeric form by 2-mercaptoethanol, as compared with those of the glycosylated enzymes. Further, the high-mannose-type enzymes were more sensitive to this agent than the complex-type proteins. A striking difference was found between the high-mannose and complex-type enzymes in terms of activation by ATP at a weakly acidic pH. At pH 5.5, the complex-type enzymes were stabilized by ATP to be restored to the virtual activity, whereas the high-mannose-type enzymes as well as the nonglycosylated mutant were not affected by ATP. These results suggest that N-glycosylation in CE is important for the maintenance of its proper folding upon changes in temperature, pH and redox state, and that the complex-type oligosaccharides contribute to the completion of the tertiary structure to maintain its active conformation in the weakly acidic pH environments.
Collapse
Affiliation(s)
- Y Yasuda
- Department of Pharmacology, Kyushu University Faculty of Dentistry, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
White PC, Cordeiro MC, Arnold D, Brodelius PE, Kay J. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus). J Biol Chem 1999; 274:16685-93. [PMID: 10358007 DOI: 10.1074/jbc.274.24.16685] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cDNA encoding the precursor of an aspartic proteinase from the flowers of the cardoon, Cynara cardunculus, was expressed in Pichia pastoris, and the recombinant, mature cyprosin that accumulated in the culture medium was purified and characterized. The resultant mixture of microheterogeneous forms was shown to consist of glycosylated heavy chains (34 or 32 kDa) plus associated light chains with molecular weights in the region of 14,000-18,000, resulting from excision of most, but not all, of the 104 residues contributed by the unique region known as the plant specific insert. SDS-polyacrylamide gel electrophoresis under non-reducing conditions indicated that disulfide bonding held the heavy and light chains together in the heterodimeric enzyme forms. In contrast, when a construct was expressed in which the nucleotides encoding the 104 residues of the plant specific insert were deleted, the inactive, unprocessed precursor form (procyprosin) accumulated, indicating that the plant-specific insert has a role in ensuring that the nascent polypeptide is folded properly and rendered capable of being activated to generate mature, active proteinase. Kinetic parameters were derived for the hydrolysis of a synthetic peptide substrate by wild-type, recombinant cyprosin at a variety of pH and temperature values and the subsite requirements of the enzyme were mapped using a systematic series of synthetic inhibitors. The significance is discussed of the susceptibility of cyprosin to inhibitors of human immunodeficiency virus proteinase and particularly of renin, some of which were found to have subnanomolar potencies against the plant enzyme.
Collapse
Affiliation(s)
- P C White
- School of Biosciences, Cardiff University, P. O. Box 911, Cardiff CF1 3US, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Zalatoris J, Rao-Naik C, Fecho G, Girdwood K, Kay J, Dunn BM. Expression, purification, and characterization of the recombinant pepsin inhibitor from Ascaris suum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 436:387-9. [PMID: 9561246 DOI: 10.1007/978-1-4615-5373-1_54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Zalatoris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kay J, Tyas L, Humphreys MJ, Hill J, Dunn BM, Berry C. Aspartic proteinases from parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 389:247-50. [PMID: 8861018 DOI: 10.1007/978-1-4613-0335-0_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Kay
- School of Molecular and Medical Biosciences, University of Wales, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Hill J, Montgomery D, Kay J. Recombinant human cathepsin E. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 362:315-8. [PMID: 8540334 DOI: 10.1007/978-1-4615-1871-6_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J Hill
- Department of Biochemistry, University of Wales, Cardiff, UK
| | | | | |
Collapse
|
14
|
Hill J, Tyas L, Phylip LH, Kay J, Dunn BM, Berry C. High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum. FEBS Lett 1994; 352:155-8. [PMID: 7925966 DOI: 10.1016/0014-5793(94)00940-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA encoding the last 48 residues of the propart and the whole mature sequence of Plasmepsin II was inserted into the T7 dependent vector pET 3a for expression in E. coli. The resultant product was insoluble but accumulated at approximately 20 mg/l of cell culture. Following solubilisation with urea, the zymogen was refolded and, after purification by ion-exchange chromatography, was autoactivated to generate mature Plasmepsin II. The ability of this enzyme to hydrolyse several chromogenic peptide substrates was examined; despite an overall identity of approximately 35% to human renin, Plasmepsin II was not inhibited significantly by renin inhibitors.
Collapse
Affiliation(s)
- J Hill
- Department of Biochemistry, University of Wales College of Cardiff, UK
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
A cDNA for procathepsin E was generated from human gastric adenocarcinoma (AGS) cells, amplified by PCR and inserted into the T7 dependent vector pET 22b for expression in E. coli. Purification of the resultant product was accomplished simply, without the need to resort to column chromatography. The recombinant protein displayed comparable properties to those of its naturally occurring counterpart. The yield of homogeneous active enzyme obtained was approximately 3 mg per 40 g of cells. This is sufficient to permit crystallisation and structural analysis to begin and a mutagenesis programme to examine structure/activity relationships now to be undertaken.
Collapse
Affiliation(s)
- J Hill
- Department of Biochemistry, University of Wales College, Cardiff, UK
| | | | | |
Collapse
|
16
|
Willenbücher J, Höfle W, Lucius R. The filarial antigens Av33/Ov33-3 show striking similarities to the major pepsin inhibitor from Ascaris suum. Mol Biochem Parasitol 1993; 57:349-51. [PMID: 8433724 DOI: 10.1016/0166-6851(93)90212-g] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J Willenbücher
- Department of Parasitology, Universität Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
17
|
Bennett K, Levine T, Ellis JS, Peanasky RJ, Samloff IM, Kay J, Chain BM. Antigen processing for presentation by class II major histocompatibility complex requires cleavage by cathepsin E. Eur J Immunol 1992; 22:1519-24. [PMID: 1601038 DOI: 10.1002/eji.1830220626] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolytic degradation (processing) of antigen by antigen-presenting cells is a major regulatory step in the activation of a T lymphocyte immune response. However, the enzymes responsible for antigen processing remain largely undefined. In this study we show that cathepsin E, and not the ubiquitous lysosomal cathepsin D, is the major aspartic proteinase in a murine antigen-presenting cell line, A20. This enzyme is localized to a non-lysosomal compartment of the endosomal system in these cells. Functional studies using a highly specific inhibitor of cathepsin E show that this enzyme is essential for the processing of ovalbumin by this cell line. Thus, cathepsin E, whose function was hitherto unknown, may play a major role in antigen processing.
Collapse
Affiliation(s)
- K Bennett
- Department of Biology, University College London, GB
| | | | | | | | | | | | | |
Collapse
|
18
|
Movahedi S, Norey CG, Kay J, Heale JB. Infection and pathogenesis of cash crops by Botrytis cinerea: primary role of an aspartic proteinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 306:213-6. [PMID: 1812708 DOI: 10.1007/978-1-4684-6012-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Movahedi
- Plant Cell and Molecular Sciences Research Group, King's College Kensington Campus, Campden Hill, London, United Kingdom
| | | | | | | |
Collapse
|
19
|
Baxter A, Campbell CJ, Grinham CJ, Keane RM, Lawton BC, Pendlebury JE. Substrate and inhibitor studies with human gastric aspartic proteinases. Biochem J 1990; 267:665-9. [PMID: 2111133 PMCID: PMC1131349 DOI: 10.1042/bj2670665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The separation of pepsin isoenzymes 1, 2, 3 and 5 (gastricsin) in human gastric juice was effected by chromatography on Mono Q ion-exchanger, and slow-moving proteinase was purified to homogeneity by using a modified procedure incorporating a novel affinity-chromatography step. The pH-activity profiles of these enzymes with mucus glycoprotein and basement-membrane substrates were determined; the profiles for pepsin 2 were noticeably different, and, in general, the pH optima for the hydrolysis of basement membrane were more acidic. Pepsin 1 expressed larger specificity constants (kcat./Km) than pepsin 3 with a series of synthetic peptide substrates, reflecting greater binding (smaller Km) by pepsin 1. Inhibitor studies at pH 1.7 and 4.5 with a series of P2-substituted lactoyl-pepstatins implied that valine at position P2 was optimal for inhibiting pepsins 1, 2 and 3 but detrimental for pepsin 5, whereas lysine at position P2 was tolerated well by pepsin 5 but not by pepsins 1, 2 and 3. The potency of lactoyl-pepstatin with lysine at position P2 did not increase as a function of pH. P2-substituted lactoyl-pepstatins failed to show any inhibitory selectivity among pepsins 1, 2 and 3.
Collapse
Affiliation(s)
- A Baxter
- Department of Biochemistry, Glaxo Group Research Ltd., Greenford, Middx., U.K
| | | | | | | | | | | |
Collapse
|
20
|
The selectivity of statine-based inhibitors against various human aspartic proteinases. Biochem J 1990; 265:871-8. [PMID: 2407237 PMCID: PMC1133712 DOI: 10.1042/bj2650871] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interactions of five human enzymes (renin, pepsin, gastricsin, cathepsin D and cathepsin E) and the aspartic proteinase from Endothia parasitica with several series of synthetic inhibitors were examined. All of the inhibitors contained the dipeptide analogue statine or its phenylalanine or cyclohexylalanine homologues in the P1-P1' positions. The residues occupying the peripheral sub-sites (P4 to P3') were varied systematically and inhibitory constants were determined for the interactions with each of the proteinases. Inhibitors were elucidated that specifically inhibited human renin and did not affect any of the other human enzymes or the fungal proteinase. With suitable selection of residues to occupy individual sub-sites, effective inhibitors of specific human aspartic proteinases may now be designed.
Collapse
|
21
|
Richards AD, Roberts R, Dunn BM, Graves MC, Kay J. Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinases. FEBS Lett 1989; 247:113-7. [PMID: 2651157 DOI: 10.1016/0014-5793(89)81251-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inhibitory constants (Ki) between 5 and 35 nM were derived (under different conditions of pH and ionic strength) for the interaction of HIV-1 proteinase with acetyl-pepstatin and H-261, two characteristic inhibitors of aspartic proteinases. Thus this enzyme, essential for replication of the AIDS virus, may be classified unequivocally as belonging to this proteinase family.
Collapse
Affiliation(s)
- A D Richards
- Department of Biochemistry, University of Wales College of Cardiff
| | | | | | | | | |
Collapse
|
22
|
Thomas DJ, Richards AD, Jupp RA, Ueno E, Yamamoto K, Samloff IM, Dunn BM, Kay J. Stabilisation of cathepsin E by ATP. FEBS Lett 1989; 243:145-8. [PMID: 2917642 DOI: 10.1016/0014-5793(89)80117-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hydrolysis of 3 distinct substrates by cathepsin E from human red blood cells and gastric mucosa was measured in the presence and absence of physiologically relevant concentrations of ATP. At pH values below about 5.0, the nucleotide was without effect. However, at pH 5.8, whereas cathepsin E was virtually inactive by itself, it was restored to full activity (kcat) by ATP and the non-hydrolysable methylene-ATP analogue. At still higher pH values, kcat progressively diminished but significant levels of cathepsin E activity were readily detectable at pH 7.0. The specificity of this stabilisation effect was examined.
Collapse
Affiliation(s)
- D J Thomas
- Department of Biochemistry, University College, Cardiff, Wales
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jupp RA, Richards AD, Kay J, Dunn BM, Wyckoff JB, Samloff IM, Yamamoto K. Identification of the aspartic proteinases from human erythrocyte membranes and gastric mucosa (slow-moving proteinase) as catalytically equivalent to cathepsin E. Biochem J 1988; 254:895-8. [PMID: 3058118 PMCID: PMC1135167 DOI: 10.1042/bj2540895] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three aspartic proteinases with similar Mr values (approx. 80,000) but from distinct sources (human gastric mucosa, human erythrocyte membranes and rat spleen) were shown to have immunological cross-reactivity and comparable mobilities when subjected to polyacrylamide-gel electrophoresis under non-denaturing conditions. Kinetic parameters (kcat, Km and Ki) were determined for the interactions of the three enzymes with two synthetic chromogenic substrates and five inhibitors (naturally occurring and synthetic). On this basis it would appear that all of the enzymes should be considered equivalent to cathepsin E. pH-activity measurements indicated that the aspartic proteinase that originated from the erythrocyte membranes retained activity at a higher pH value than either of its readily soluble counterparts.
Collapse
Affiliation(s)
- R A Jupp
- Department of Biochemistry, University College, Cardiff, Wales, U.K
| | | | | | | | | | | | | |
Collapse
|
24
|
Dunn BM, Jimenez M, Parten BF, Valler MJ, Rolph CE, Kay J. A systematic series of synthetic chromophoric substrates for aspartic proteinases. Biochem J 1986; 237:899-906. [PMID: 3541904 PMCID: PMC1147073 DOI: 10.1042/bj2370899] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hydrolysis of the chromogenic peptide Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu at the Phe-Phe(4-NO2) bond by nine aspartic proteinases of animal origin and seven enzymes from micro-organisms is described [Phe(4-NO2) is p-nitro-L-phenylalanine]. A further series of six peptides was synthesized in which the residue in the P3 position was systematically varied from hydrophobic to hydrophilic. The Phe-Phe(4-NO2) bond was established as the only peptide bond cleaved, and kinetic constants were obtained for the hydrolysis of these peptide substrates by a representative selection of aspartic proteinases of animal and microbial origin. The value of these water-soluble substrates for structure-function investigations is discussed.
Collapse
|