1
|
Misra R, Maity A, Kundu S, Bhunia M, Nanda B, Maiti NC, Pal U. Loop Dynamics and Conformational Flexibility in Dengue Serine Protease Activity: Noninvasive Perturbation by Solvent Exchange. J Chem Inf Model 2023; 63:2122-2132. [PMID: 36943246 DOI: 10.1021/acs.jcim.2c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/23/2023]
Abstract
Molecular mechanics play an important role in enzyme action and understanding the dynamics of loop motion is key for designing inhibitors of an enzyme, particularly targeting the allosteric sites. For the successful creation of new protease inhibitors targeting the dengue serine protease, our current investigation detailed the intricate structural dynamics of NS2B/NS3 dengue protease. This enzyme is one of the most essential enzymes in the life cycle of the dengue virus, which is responsible for the activation/processing of viral polyprotein, thus making it a potential target for drug discovery. We showed that the internal dynamics of two regions, fingers 1 and 2 (R24-G39 and L149-A164, respectively) adjacent to the active site triad of this protease, control the enzyme action. Each of these regions is composed of two antiparallel β-strands connected by β-turn/hairpin loops. The correlated bending and rocking motions in the two β-turns on either side of the active site were found to modulate the activity of the enzyme to a large extent. With increasing concentration of cosolvent dimethyl sulfoxide, correlated motions in the finger 2 region get diminished and bending of finger 1 increases, which are also reflected in the loss of enzyme activity. Decreasing temperature and mutations in neighboring nonsubstrate binding residues show similar effects on loop motion and enzyme kinetics. Therefore, in vitro noninvasive perturbation of these motions by the solvent exchange as well as cold stress in combination with in silico molecular dynamics simulations established the importance of the two β-turns in the functioning of dengue virus serotype 2 NS2B/NS3 serine protease.
Collapse
Affiliation(s)
- Rajdip Misra
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Anupam Maity
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Mrinmay Bhunia
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Banadipa Nanda
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
2
|
Ostermeier L, Oliva R, Winter R. The multifaceted effects of DMSO and high hydrostatic pressure on the kinetic constants of hydrolysis reactions catalyzed by α-chymotrypsin. Phys Chem Chem Phys 2020; 22:16325-16333. [DOI: 10.1039/d0cp03062g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The cosolvent DMSO and high pressure have antagonistic effects on the kinetic constants of α-chymotrypsin-catalyzed hydrolysis reactions.
Collapse
Affiliation(s)
- Lena Ostermeier
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Rosario Oliva
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| | - Roland Winter
- Physical Chemistry I – Biophysical Chemistry
- Faculty of Chemistry and Chemical Biology
- TU Dortmund University
- D-44227 Dortmund
- Germany
| |
Collapse
|
3
|
van Haren MJ, Thomas MG, Sartini D, Barlow DJ, Ramsden DB, Emanuelli M, Klamt F, Martin NI, Parsons RB. The kinetic analysis of the N-methylation of 4-phenylpyridine by nicotinamide N-methyltransferase: Evidence for a novel mechanism of substrate inhibition. Int J Biochem Cell Biol 2018; 98:127-136. [PMID: 29549048 DOI: 10.1016/j.biocel.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
The N-methylation of 4-phenylpyridine produces the neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+). We investigated the kinetics of 4-phenylpyridine N-methylation by nicotinamide N-methyltransferase (NNMT) and its effect upon 4-phenylpyridine toxicity in vitro. Human recombinant NNMT possessed 4-phenylpyridine N-methyltransferase activity, with a specific activity of 1.7 ± 0.03 nmol MPP+ produced/h/mg NNMT. Although the Km for 4-phenylpyridine was similar to that reported for nicotinamide, its kcat of 9.3 × 10-5 ± 2 × 10-5 s-1 and specificity constant, kcat/Km, of 0.8 ± 0.8 s-1 M-1 were less than 0.15% of the respective values for nicotinamide, demonstrating that 4-phenylpyridine is a poor substrate for NNMT. At low (<2.5 mM) substrate concentration, 4-phenylpyridine N-methylation was competitively inhibited by dimethylsulphoxide, with a Ki of 34 ± 8 mM. At high (>2.5 mM) substrate concentration, enzyme activity followed substrate inhibition kinetics, with a Ki of 4 ± 1 mM. In silico molecular docking suggested that 4-phenylpyridine binds to the active site of NNMT in two non-redundant poses, one a substrate binding mode and the other an inhibitory mode. Finally, the expression of NNMT in the SH-SY5Y cell-line had no effect cell death, viability, ATP content or mitochondrial membrane potential. These data demonstrate that 4-phenylpyridine N-methylation by NNMT is unlikely to serve as a source of MPP+. The possibility for competitive inhibition by dimethylsulphoxide should be considered in NNMT-based drug discovery studies. The potential for 4-phenylpyridine to bind to the active site in two binding orientations using the same active site residues is a novel mechanism of substrate inhibition.
Collapse
Affiliation(s)
- Matthijs J van Haren
- Utrecht University, Utrecht Institute for Pharmaceutical Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin G Thomas
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Davide Sartini
- Universitá Politecnica delle Marche, Department of Clinical Sciences, School of Medicine, Ancona, Italy
| | - David J Barlow
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - David B Ramsden
- University of Birmingham, Institute of Metabolism and Systems Research, Edgbaston, Birmingham B15 2TH, UK
| | - Monica Emanuelli
- Universitá Politecnica delle Marche, Department of Clinical Sciences, School of Medicine, Ancona, Italy
| | - Fábio Klamt
- Universidade Federal do Rio Grande do Sul, Departmento de Bioquímica, Instituto de Ciêncas Básicas de Saúde, Rua Ramiro Barcelos, Porto Alegre, RS 90035 003, Brazil
| | - Nathaniel I Martin
- Utrecht University, Utrecht Institute for Pharmaceutical Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Richard B Parsons
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
4
|
Salehi F, Emamzadeh R, Nazari M, Rasa SMM. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site. Int J Biol Macromol 2016; 93:1253-1260. [PMID: 27651278 DOI: 10.1016/j.ijbiomac.2016.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022]
Abstract
Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the Km changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed.
Collapse
Affiliation(s)
| | | | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | |
Collapse
|
5
|
PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. ScientificWorldJournal 2013; 2013:486574. [PMID: 24319370 PMCID: PMC3844238 DOI: 10.1155/2013/486574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Collapse
|
6
|
Tretyakova T, Shushanyan M, Partskhaladze T, Makharadze M, van Eldik R, Khoshtariya DE. Simplicity within the complexity: bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin. Biophys Chem 2013; 175-176:17-27. [PMID: 23524288 DOI: 10.1016/j.bpc.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2013] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
New understanding of the fundamental links between protein stability, conformational flexibility and function, can be gained through synergic studies on their catalytic and folding/unfolding properties under the influence of stabilizing/destabilizing additives. We explored an impact of dimethyl sulfoxide (DMSO), the moderate effector of multilateral action, on the kinetic (functional) and thermodynamic (thermal unfolding) patterns of a hydrolytic enzyme, α-chymotrypsin (α-CT), over a wide range of additive concentrations, 0-70% (v/v). Both the calorimetric and kinetic data exhibited rich behavior pointing to the complex interplay of global/local stability (and flexibility) patterns. The complex action of DMSO is explained through the negative and positive preferential solvation motifs that prevail for the extreme opposite, native-like and unfolded states, respectively, implying essential stabilization of compact domains by enhancement of interfacial water networks and destabilization of a flexible active site by direct binding of DMSO to the unoccupied specific positions intended for elongated polypeptide substrates.
Collapse
Affiliation(s)
- Tatyana Tretyakova
- Institute for Biophysics and Bionanosciences at the Department of Physics, I. Javakhishvili Tbilisi State University, I. Chavchavadze Ave. 3, 0128 Tbilisi, Georgia
| | | | | | | | | | | |
Collapse
|
7
|
Natural Inhibitors of Poly(ADP-ribose) Polymerase-1. Mol Neurobiol 2012; 46:55-63. [DOI: 10.1007/s12035-012-8257-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2011] [Accepted: 03/01/2012] [Indexed: 01/08/2023]
|
8
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
9
|
Noël G, Godon C, Fernet M, Giocanti N, Mégnin-Chanet F, Favaudon V. Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 2006; 5:564-74. [PMID: 16546970 DOI: 10.1158/1535-7163.mct-05-0418] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Radiosensitization caused by the poly(ADP-ribose) polymerase (PARP) inhibitor 4-amino-1,8-naphthalimide (ANI) was investigated in 10 asynchronously growing rodent (V79, CHO-Xrs6, CHO-K1, PARP-1+/+ 3T3, and PARP-1-/- 3T3) or human (HeLa, MRC5VI, IMR90, M059J, and M059K) cell lines, either repair proficient or defective in DNA-PK (CHO-Xrs6 and M059J) or PARP-1 (PARP-1-/- 3T3). Pulse exposure to ANI (1-hour contact) potentiated radiation response in rodent cells except in PARP-1(-/-) 3T3 fibroblasts. In contrast, ANI did not significantly enhance radiation susceptibility in asynchronously dividing human cells; yet, single-strand break rejoining was lengthened by ca. 7-fold in all but mouse PARP-1-/- 3T3s. Circumstantial evidence suggested that radiosensitization by ANI occurs in rapidly dividing cells only. Experiments using synchronized HeLa cells consistently showed that ANI-induced radiosensitization is specific of the S phase of the cell cycle and involves stalled replication forks. Under these conditions, prolonged contact with ANI ended in the formation of de novo DNA double-strand breaks hours after irradiation, evoking collision with uncontrolled replication forks of DNA lesions whose repair was impaired by inhibition of the PARP catalytic activity. The data suggest that increased response to radiotherapy by PARP inhibitors may be achieved only in rapidly growing tumors with a high S-phase content.
Collapse
Affiliation(s)
- Georges Noël
- INSERM U 612, Institut Curie-Recherche, Laboratoires 110-112, Centre Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Casey PJ, Black JH, Szabo C, Frosch M, Albadawi H, Chen M, Cambria RP, Watkins MT. Poly(adenosine diphosphate ribose) polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion. J Vasc Surg 2005; 41:99-107. [PMID: 15696051 DOI: 10.1016/j.jvs.2004.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) remains a source of morbidity after thoracoabdominal aortic reconstruction. These studies were designed to determine whether PJ34, a novel ultrapotent inhibitor of the nuclear enzyme poly(adenosine diphosphate ribose) polymerase (PARP) could modulate neurologic injury after thoracic aortic ischemia reperfusion (TAR) in a murine model of SCI. METHODS Forty-one anesthetized male mice were subject to thoracic aortic occlusion (11 minutes) through a cervical mediastinotomy followed by 48 hours of reperfusion (TAR) under normothermic conditions. PJ34-treated mice (PJ, n = 12) were given 10 mg/kg PJ34 intraperitoneally 1 hour before ischemia and 1 hour after unclamping. The control group (UN, n = 21) received normal saline intraperitoneally 1 hour before ischemia and 1 hour after unclamping. Sham animals (n = 10) were subject to thoracic aortic exposure with no aortic clamping and similar intraperitoneal normal saline injections. PARP-1-/- (KO, n = 8) mice were subjected to the same conditions as the UN mice. Blinded observers rated murine neurologic status after TAR by using an established rodent paralysis scoring system. Murine spinal cords were subjected to cytokine (GRO-1) protein analysis as a marker of inflammation and immunohistochemical analysis (hematoxylin-eosin and PAR staining). Paralysis scores (PS) and GRO-1 levels were compared with analysis of variance, and survival data were compared with chi 2 . RESULTS Immediately after TAR, UN and PJ mice had severe neurologic dysfunction (PS = 5.8 +/- 0.1 and 4.6 +/- 0.6, respectively; P > .05), which was significantly worse than the KO mice (PS = 1.0 +/- 0.7, P < .001). After 6, 24, and 48 hours KO mice had no discernable neurologic injury (PS = 0). Six hours after TAR, PJ mice significantly improved (PS = 1.1 +/- 0.73, P < .001) and remained improved at 24 (PS = 0.7 +/- 0.6) and 48 hours (PS = 0.6 +/- 0.6). UN mice did not improve their PS, and Sham mice showed no neurologic abnormality at any time during these experiments. The mortality at 48 hours was 0% for PJ and KO mice, 43% for UN (P = .012), and 0% for Sham. GRO-1 levels were significantly decreased in PJ and KO versus UN mice (UN, 583 +/- 119 vs PJ, 5.8 +/- 0 vs KO, 5.3 +/- 1.4 mg/pg; P < .0001). Immunohistochemistry showed evidence of decreased PAR staining and ventral motor neuron injury in PJ mice. CONCLUSIONS Genetic deletion of PARP or inhibition of its activity (PJ34) rescued neurologic function in mice subjected to TAR. PARP inhibition might represent a novel therapeutic approach for prevention of SCI after TAR.
Collapse
Affiliation(s)
- Patrick J Casey
- Division of Vascular-Endovascular Surgery, Massachusetts General Hospital, 15 Parkman Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chatterjee PK, Chatterjee BE, Pedersen H, Sivarajah A, McDonald MC, Mota-Filipe H, Brown PAJ, Stewart KN, Cuzzocrea S, Threadgill MD, Thiemermann C. 5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion. Kidney Int 2004; 65:499-509. [PMID: 14717920 DOI: 10.1111/j.1523-1755.2004.00415.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the development of ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of a water-soluble and potent PARP inhibitor, 5-aminoisoquinolinone (5-AIQ), on the renal injury and dysfunction caused by oxidative stress of the rat kidney in vitro and in vivo. METHODS Primary cultures of rat renal proximal tubular cells, subjected to oxidative stress caused by hydrogen peroxide (H2O2), were incubated with increasing concentrations of 5-AIQ (0.01 to 1 mmol/L) after which PARP activation, cellular injury, and cell death were measured. In in vivo experiments, anesthetized male Wistar rats were subjected to renal bilateral ischemia (45 minutes) followed by reperfusion (6 hours) in the absence or presence of 5-AIQ (0.3 mg/kg) after which renal dysfunction, injury and PARP activation were assessed. RESULTS Incubation of proximal tubular cells with H2O2 caused a substantial increase in PARP activity, cellular injury, and cell death, which were all significantly reduced in a concentration-dependent by 5-AIQ [inhibitory concentration 50 (IC50) approximately 0.03 mmol/L]. In vivo, renal I/R resulted in renal dysfunction, injury, and PARP activation, primarily in the proximal tubules of the kidney. Administration of 5-AIQ significantly reduced the biochemical and histologic signs of renal dysfunction and injury and markedly reduced PARP activation caused by I/R. CONCLUSION This study demonstrates that 5-AIQ is a potent, water soluble inhibitor of PARP activity, which can significantly reduce (1) cellular injury and death caused to primary cultures of rat proximal tubular cells by oxidative stress in vitro, and (2) renal injury and dysfunction caused by I/R of the kidney of the rat in vivo.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine, Nephrology & Critical Care, The William Harvey Research Institute, Queen Mary-University of London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Thiemermann C. Development of novel, water-soluble inhibitors of poly (adenosine 5'-diphosphate ribose) synthetase activity for use in shock and ischemia-reperfusion injury. Crit Care Med 2002; 30:1163-5. [PMID: 12006823 DOI: 10.1097/00003246-200205000-00038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
13
|
Wayman N, McDonald MC, Thompson AS, Threadgill MD, Thiemermann C. 5-aminoisoquinolinone, a potent inhibitor of poly (adenosine 5'-diphosphate ribose) polymerase, reduces myocardial infarct size. Eur J Pharmacol 2001; 430:93-100. [PMID: 11698068 DOI: 10.1016/s0014-2999(01)01359-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
This study investigates the effects of a novel, water-soluble inhibitor of the activity of poly (adenosine 5'-diphosphate ribose) polymerase, 5-aminoisoquinolinone [5-aminoisoquinolin-1(2H)-one], on (i) poly (adenosine 5'-diphosphate ribose) polymerase activity in rat cardiac myoblasts and (ii) the infarct size caused by regional myocardial ischaemia and reperfusion in the rat. Exposure of H9c2 cells to hydrogen peroxide (H2O2, 1 mM) caused a significant increase in poly (adenosine 5'-diphosphate ribose) polymerase activity and an 80-90% reduction in mitochondrial respiration (cellular injury). Pretreatment of these cells with 5-aminoisoquinolinone (0.003-1 mM) caused a concentration-dependent inhibition of poly (adenosine 5'-diphosphate ribose) polymerase activity (IC50: approximately 4.5 microM, n=6-9) and cell injury (EC50: approximately 4.45 microM, n=9). In a rat model of myocardial infarction, left anterior descending coronary artery occlusion (25 min) and reperfusion (2 h) resulted in an infarct size of 50+/-3%. Administration (1 min before reperfusion) of 5-aminoisoquinolinone reduced myocardial infarct size in a dose-related fashion. Thus, 5-aminoisoquinolinone is a potent inhibitor of poly (adenosine 5'-diphosphate ribose) polymerase activity in cardiac myoblasts and reduces myocardial infarct size in vivo.
Collapse
Affiliation(s)
- N Wayman
- The William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, St. Bartholomew's Hospital, Charterhouse Square, EC1M 6BQ, London, UK
| | | | | | | | | |
Collapse
|