1
|
Carlin A, Kadji C, Cannie MM, Resta S, Kang X, Jani JC. The use of magnetic resonance imaging in the prediction of birthweight. Prenat Diagn 2019; 40:125-135. [PMID: 31319434 DOI: 10.1002/pd.5530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/05/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023]
Abstract
Extremes of fetal growth can increase adverse pregnancy outcomes, and this is equally applicable to single and multiple gestations. Traditionally, these cases have been identified using simple two-dimensional ultrasound which is quite limited by its low precision. Magnetic resonance imaging (MRI) has now been used for many years in obstetrics, mainly as an adjunct to ultrasound for congenital abnormalities and increasingly as part of the post-mortem examination. However, MRI can also be used to accurately assess fetal weight as first demonstrated by Baker et al in 1994, using body volumes rather than standard biometric measurements. This publication was followed by several others, all of which confirmed the superiority of MRI; however, despite this initial promise, the technique has never been successfully integrated into clinical practice. In this review, we provide an overview of the literature, detail the various techniques and formulas currently available, discuss the applicability to specific high-risk groups and present our vision for the future of MRI within clinical obstetrics.
Collapse
Affiliation(s)
- Andrew Carlin
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Kadji
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium.,Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serena Resta
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Xin Kang
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques C Jani
- Department of Obstetrics and Gynaecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Kadji C, Cannie MM, Resta S, Guez D, Abi-Khalil F, De Angelis R, Jani JC. Magnetic resonance imaging for prenatal estimation of birthweight in pregnancy: review of available data, techniques, and future perspectives. Am J Obstet Gynecol 2019; 220:428-439. [PMID: 30582928 DOI: 10.1016/j.ajog.2018.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Fetuses at the extremes of growth abnormalities carry a risk of perinatal morbidity and death. Their identification traditionally is done by 2-dimensional ultrasound imaging, the performance of which is not always optimal. Magnetic resonance imaging superbly depicts fetal anatomy and anomalies and has contributed largely to the evaluation of high-risk pregnancies. In 1994, magnetic resonance imaging was introduced for the estimation of fetal weight, which is done by measuring the fetal body volume and converting it through a formula to fetal weight. Approximately 10 studies have shown that magnetic resonance imaging is more accurate than 2-dimensional ultrasound imaging in the estimation of fetal weight. Yet, despite its promise, the magnetic resonance imaging technique currently is not implemented clinically. Over the last 5 years, this technique has evolved quite rapidly. Here, we review the literature data, provide details of the various measurement techniques and formulas, consider the application of the magnetic resonance imaging technique in specific populations such as patients with diabetes mellitus and twin pregnancies, and conclude with what we believe could be the future perspectives and clinical application of this challenging technique. The estimation of fetal weight by ultrasound imaging is based mainly on an algorithm that takes into account the measurement of biparietal diameter, head circumference, abdominal circumference, and femur length. The estimation of fetal weight by magnetic resonance imaging is based on one of the 2 formulas: (1) magnetic resonance imaging-the estimation of fetal weight (in kilograms)=1.031×fetal body volume (in liters)+0.12 or (2) magnetic resonance imaging-the estimation of fetal weight (in grams)=1.2083×fetal body volume (in milliliters)ˆ0.9815. Comparison of these 2 formulas for the detection of large-for-gestational age neonates showed similar performance for preterm (P=.479) and for term fetuses (P=1.000). Literature data show that the estimation of fetal weight with magnetic resonance imaging carries a mean or median relative error of 2.6 up to 3.7% when measurements were performed at <1 week from delivery; whereas for the same fetuses, the relative error at 2-dimensional ultrasound imaging varied between 6.3% and 11.4%. Further, in a series of 270 fetuses who were evaluated within 48 hours from birth and for a fixed false-positive rate of 10%, magnetic resonance imaging detected 98% of large-for-gestational age neonates (≥95th percentile for gestation) compared with 67% with ultrasound imaging estimates. For the same series, magnetic resonance imaging applied to the detection of small-for-gestational age neonates ≤10th percentile for gestation, for a fixed 10% false-positive rate, reached a detection rate of 100%, compared with only 78% for ultrasound imaging. Planimetric measurement has been 1 of the main limitations of magnetic resonance imaging for the estimation of fetal weight. Software programs that allow semiautomatic segmentation of the fetus are available from imaging manufacturers or are self-developed. We have shown that all of them perform equally well for the prediction of large-for-gestational age neonates, with the advantage of the semiautomatic methods being less time-consuming. Although many challenges remain for this technique to be generalized, a 2-step strategy after the selection of a group who are at high risk of the extremes of growth abnormalities is the most likely scenario. Results of ongoing studies are awaited (ClinicalTrials.gov Identifier # NCT02713568).
Collapse
Affiliation(s)
- Caroline Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Brussels, Belgium; Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serena Resta
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - David Guez
- Advanced Technology Center, Sheba Tel Hashomer Hospital, Ramat Gan, Israel
| | - Fouad Abi-Khalil
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
Liao K, Tang L, Peng C, Chen L, Chen R, Huang L, Liu P, Chen C. A modified model can improve the accuracy of foetal weight estimation by magnetic resonance imaging. Eur J Radiol 2018; 110:242-248. [PMID: 30599867 DOI: 10.1016/j.ejrad.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine whether birth weight can be reliably estimated using three-dimensional (3D) magnetic resonance imaging (MRI) foetal body volume at term. METHOD Foetuses between 37+5 weeks and 41 weeks of gestation were delivered within 7 days after MRI and ultrasound (US) examinations. 3D foetal models were reconstructed from MRI data, and body volume was calculated. The MRI-based weight estimations were calculated using the Baker equation and the modified Baker equation with a higher density coefficient. The US-based weight estimations were determined using the formula by Hadlock. Estimations based on MRI and US were compared with the birth weights. RESULTS Among 22 foetuses that underwent both US and MRI evaluations within 48 h before labour, the mean random errors for the estimated weight based on US, the Baker equation and the modified Baker equation were 6.5%, 4.8%, and 4.8%, respectively, and these methods correctly estimated the weights of 77.3%, 86.4% and 100% of the foetuses to within 10% of the actual birth weight. The weights of 95.5% of the foetuses were underestimated by the Baker equation. Similar findings were observed among 103 estimations based on both US and MRI within 7 days before delivery. The mean relative error of the MRI-determined estimate of foetal weight using the modified Baker equation was not significantly associated with foetal sex, birth weight, gestational age at MRI examination, the MRI-to-delivery interval or the type of MRI scanner. CONCLUSION A modified Baker equation with a high-density coefficient can improve the accuracy of foetal weight estimation based on 3D MRI foetal volume at term, and its accuracy was not significantly affected by foetal characteristics or the type of MRI scanner among births occurring within 7 days after examinations.
Collapse
Affiliation(s)
- Kedan Liao
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Lian Tang
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Chen
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiying Chen
- Department of Radiology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Huang
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Liu
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China.
| | - Chunlin Chen
- Department of Obstetrics and Gynaecology, NanFang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Torrents-Barrena J, Piella G, Masoller N, Gratacós E, Eixarch E, Ceresa M, Ballester MÁG. Segmentation and classification in MRI and US fetal imaging: Recent trends and future prospects. Med Image Anal 2018; 51:61-88. [PMID: 30390513 DOI: 10.1016/j.media.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Fetal imaging is a burgeoning topic. New advancements in both magnetic resonance imaging and (3D) ultrasound currently allow doctors to diagnose fetal structural abnormalities such as those involved in twin-to-twin transfusion syndrome, gestational diabetes mellitus, pulmonary sequestration and hypoplasia, congenital heart disease, diaphragmatic hernia, ventriculomegaly, etc. Considering the continued breakthroughs in utero image analysis and (3D) reconstruction models, it is now possible to gain more insight into the ongoing development of the fetus. Best prenatal diagnosis performances rely on the conscious preparation of the clinicians in terms of fetal anatomy knowledge. Therefore, fetal imaging will likely span and increase its prevalence in the forthcoming years. This review covers state-of-the-art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time. Potential applications of the aforementioned methods into clinical settings are also inspected. Finally, improvements in existing approaches as well as most promising avenues to new areas of research are briefly outlined.
Collapse
Affiliation(s)
- Jordina Torrents-Barrena
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Gemma Piella
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Narcís Masoller
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Mario Ceresa
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miguel Ángel González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| |
Collapse
|
5
|
Kadji C, Bevilacqua E, Hurtado I, Carlin A, Cannie MM, Jani JC. Comparison of conventional 2D ultrasound to magnetic resonance imaging for prenatal estimation of birthweight in twin pregnancy. Am J Obstet Gynecol 2018; 218:128.e1-128.e11. [PMID: 29045850 DOI: 10.1016/j.ajog.2017.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND During prenatal follow-up of twin pregnancies, accurate identification of birthweight and birthweight discordance is important to identify the high-risk group and plan perinatal care. Unfortunately, prenatal evaluation of birthweight discordance by 2-dimensional ultrasound has been far from optimal. OBJECTIVE The objective of the study was to prospectively compare estimates of fetal weight based on 2-dimensional ultrasound (ultrasound-estimated fetal weight) and magnetic resonance imaging (magnetic resonance-estimated fetal weight) with actual birthweight in women carrying twin pregnancies. STUDY DESIGN Written informed consent was obtained for this ethics committee-approved study. Between September 2011 and December 2015 and within 48 hours before delivery, ultrasound-estimated fetal weight and magnetic resonance-estimated fetal weight were conducted in 66 fetuses deriving from twin pregnancies at 34.3-39.0 weeks; gestation. Magnetic resonance-estimated fetal weight derived from manual measurement of fetal body volume. Comparison of magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight measurements vs birthweight was performed by calculating parameters as described by Bland and Altman. Receiver-operating characteristic curves were constructed for the prediction of small-for-gestational-age neonates using magnetic resonance-estimated fetal weight and ultrasound-estimated fetal weight. For twins 1 and 2 separately, the relative error or percentage error was calculated as follows: (birthweight - ultrasound-estimated fetal weight (or magnetic resonance-estimated fetal weight)/birthweight) × 100 (percentage). Furthermore, ultrasound-estimated fetal weight, magnetic resonance-estimated fetal weight, and birthweight discordance were calculated as 100 × (larger estimated fetal weight-smaller estimated fetal weight)/larger estimated fetal weight. The ultrasound-estimated fetal weight discordance and the birthweight discordance were correlated using linear regression analysis and Pearson's correlation coefficient. The same was done between the magnetic resonance-estimated fetal weight and birthweight discordance. To compare data, the χ2, McNemar test, Student t test, and Wilcoxon signed rank test were used as appropriate. We used the Fisher r-to-z transformation to compare correlation coefficients. RESULTS The bias and the 95% limits of agreement of ultrasound-estimated fetal weight are 2.99 (-19.17% to 25.15%) and magnetic resonance-estimated fetal weight 0.63 (-9.41% to 10.67%). Limits of agreement were better between magnetic resonance-estimated fetal weight and actual birthweight as compared with the ultrasound-estimated fetal weight. Of the 66 newborns, 27 (40.9%) were of weight of the 10th centile or less and 21 (31.8%) of the fifth centile or less. The area under the receiver-operating characteristic curve for prediction of birthweight the 10th centile or less by prenatal ultrasound was 0.895 (P < .001; SE, 0.049), and by magnetic resonance imaging it was 0.946 (P < .001; SE, 0.024). Pairwise comparison of receiver-operating characteristic curves showed a significant difference between the areas under the receiver-operating characteristic curves (difference, 0.087, P = .049; SE, 0.044). The relative error for ultrasound-estimated fetal weight was 6.8% and by magnetic resonance-estimated fetal weight, 3.2% (P < .001). When using ultrasound-estimated fetal weight, 37.9% of fetuses (25 of 66) were estimated outside the range of ±10% of the actual birthweight, whereas this dropped to 6.1% (4 of 66) with magnetic resonance-estimated fetal weight (P < .001). The ultrasound-estimated fetal weight discordance and the birthweight discordance correlated significantly following the linear equation: ultrasound-estimated fetal weight discordance = 0.03 + 0.91 × birthweight (r = 0.75; P < .001); however, the correlation was better with magnetic resonance imaging: magnetic resonance-estimated fetal weight discordance = 0.02 + 0.81 × birthweight (r = 0.87; P < .001). CONCLUSION In twin pregnancies, magnetic resonance-estimated fetal weight performed immediately prior to delivery is more accurate and predicts small-for-gestational-age neonates significantly better than ultrasound-estimated fetal weight. Prediction of birthweight discordance is better with magnetic resonance imaging as compared with ultrasound.
Collapse
|
6
|
Napolitano R, Donadono V, Ohuma EO, Knight CL, Wanyonyi SZ, Kemp B, Norris T, Papageorghiou AT. Scientific basis for standardization of fetal head measurements by ultrasound: a reproducibility study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2016; 48:80-5. [PMID: 27158767 PMCID: PMC5113683 DOI: 10.1002/uog.15956] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 05/15/2023]
Abstract
OBJECTIVE To compare the standard methods for ultrasound measurement of fetal head circumference (HC) and biparietal diameter (BPD) (outer-to-outer (BPDoo) vs outer-to-inner (BPDoi) caliper placement), and compare acquisition of these measurements in transthalamic (TT) vs transventricular (TV) planes. METHODS This study utilized ultrasound images acquired from women participating in the Oxford arm of the INTERGROWTH-21(st) Project. In the first phase of the study, BPDoo and BPDoi were measured on stored images. In the second phase, real-time measurements of BPD, occipitofrontal diameter (OFD) and HC in TT and TV planes were obtained by pairs of sonographers. Reproducibility of measurements made by the same (intraobserver) and by different (interobserver) sonographers, as well as the reproducibility of caliper placement and measurements obtained in different planes, was assessed using Bland-Altman plots. RESULTS In Phase I, we analyzed ultrasound images of 108 singleton fetuses. The mean intraobserver and interobserver differences were < 2% (1.34 mm) and the 95% limits of agreement were < 5% (3 mm) for both BPDoo and BPDoi. Neither method for measuring BPD showed consistently better reproducibility. In Phase II, we analyzed ultrasound images of 100 different singleton fetuses. The mean intraobserver and interobserver differences were < 1% (2.26 mm) and the 95% limits of agreement were < 8% (14.45 mm) for all fetal head measurements obtained in TV and TT planes. Neither plane for measuring fetal head showed consistently better reproducibility. Measurement of HC using the ellipse facility was as reproducible as HC calculated from BPD and OFD. OFD by itself was the least reproducible of all fetal head measurements. CONCLUSIONS Measurements of BPDoi and BPDoo are equally reproducible; however, we believe BPDoo should be used in clinical practice as it allows fetal HC to be measured and compared with neonatal HC. For all head measurements, TV and TT planes provide equally reproducible values at any gestational age, and HC values are similar in both planes. Fetal head measurement in the TT plane is preferable as international standards in this plane are available; however, measurements in the TV plane can be plotted on the same standards. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- R. Napolitano
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - V. Donadono
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - E. O. Ohuma
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
- Oxford Maternal & Perinatal Health Institute, Green Templeton CollegeUniversity of OxfordOxfordUK
- Centre for Statistics in Medicine, Botnar Research CentreUniversity of OxfordOxfordUK
| | - C. L. Knight
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - S. Z. Wanyonyi
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - B. Kemp
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - T. Norris
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
| | - A. T. Papageorghiou
- Nuffield Department of Obstetrics & GynaecologyUniversity of OxfordOxfordUK
- Oxford Maternal & Perinatal Health Institute, Green Templeton CollegeUniversity of OxfordOxfordUK
| |
Collapse
|