1
|
Monni G, Atzori L, Corda V, Dessolis F, Iuculano A, Hurt KJ, Murgia F. Metabolomics in Prenatal Medicine: A Review. Front Med (Lausanne) 2021; 8:645118. [PMID: 34249959 PMCID: PMC8267865 DOI: 10.3389/fmed.2021.645118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pregnancy is a complicated and insidious state with various aspects to consider, including the well-being of the mother and child. Developing better non-invasive tests that cover a broader range of disorders with lower false-positive rates is a fundamental necessity in the prenatal medicine field, and, in this sense, the application of metabolomics could be extremely useful. Metabolomics measures and analyses the products of cellular biochemistry. As a biomarker discovery tool, the integrated holistic approach of metabolomics can yield new diagnostic or therapeutic approaches. In this review, we identify and summarize prenatal metabolomics studies and identify themes and controversies. We conducted a comprehensive search of PubMed and Google Scholar for all publications through January 2020 using combinations of the following keywords: nuclear magnetic resonance, mass spectrometry, metabolic profiling, prenatal diagnosis, pregnancy, chromosomal or aneuploidy, pre-eclampsia, fetal growth restriction, pre-term labor, and congenital defect. Metabolite detection with high throughput systems aided by advanced bioinformatics and network analysis allowed for the identification of new potential prenatal biomarkers and therapeutic targets. We took into consideration the scientific papers issued between the years 2000-2020, thus observing that the larger number of them were mainly published in the last 10 years. Initial small metabolomics studies in perinatology suggest that previously unidentified biochemical pathways and predictive biomarkers may be clinically useful. Although the scientific community is considering metabolomics with increasing attention for the study of prenatal medicine as well, more in-depth studies would be useful in order to advance toward the clinic world as the obtained results appear to be still preliminary. Employing metabolomics approaches to understand fetal and perinatal pathophysiology requires further research with larger sample sizes and rigorous testing of pilot studies using various omics and traditional hypothesis-driven experimental approaches.
Collapse
Affiliation(s)
- Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Francesca Dessolis
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Ambra Iuculano
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - K. Joseph Hurt
- Divisions of Maternal Fetal Medicine and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Federica Murgia
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
2
|
West KA, Kanu C, Maric T, McDonald JAK, Nicholson JK, Li JV, Johnson MR, Holmes E, Savvidou MD. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. Gut 2020; 69:1452-1459. [PMID: 31964751 PMCID: PMC7398482 DOI: 10.1136/gutjnl-2019-319620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. DESIGN A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. RESULTS Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. CONCLUSION Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further.
Collapse
Affiliation(s)
- Kiana Ashley West
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Chidimma Kanu
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Tanya Maric
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Julie Anne Kathryn McDonald
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mark R Johnson
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,Australian National Phenome Centre, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Makrina D Savvidou
- Obstetrics & Gynaecology, Chelsea and Westminster Hospital, Institute of Reproductive Developmental Biology, Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
3
|
Gevi F, Meloni A, Mereu R, Lelli V, Chiodo A, Ragusa A, Timperio AM. Urine Metabolome during Parturition. Metabolites 2020; 10:metabo10070290. [PMID: 32708819 PMCID: PMC7407522 DOI: 10.3390/metabo10070290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, some studies have described metabolic changes during human childbirth labor. Metabolomics today is recognized as a powerful approach in a prenatal research context, since it can provide detailed information during pregnancy and it may enable the identification of biomarkers with potential diagnostic or predictive. This is an observational, longitudinal, prospective cohort study of a total of 51 serial urine samples from 15 healthy pregnant women, aged 29–40 years, which were collected before the onset of labor (out of labor, OL). In the same women, during labor (in labor or dilating phase, IL-DP). Samples were analyzed by hydrophilic interaction ultra-performance liquid chromatography coupled with mass spectrometry (HILIC-UPLC-MS), a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. This method was used to identify the potential biomarkers. The top 20 most discriminative metabolites contributing to the complete separation of OL and IL-DP were identified. Urinary metabolites displaying the largest differences between OL and IL-DP belonged to steroid hormone, particularly conjugated estrogens and amino acids much of this difference is determined by the fetal contribution. In addition, our results highlighted the efficacy of using urine samples instead of more invasive techniques to evaluate the difference in metabolic analysis between OL and IL-DP.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Biology and Ecology University of Tuscia, 01100 Viterbo, Italy; (F.G.); (V.L.)
| | - Alessandra Meloni
- Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), 09124 Cagliari, Italy; (A.M.); (R.M.); (A.C.)
| | - Rossella Mereu
- Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), 09124 Cagliari, Italy; (A.M.); (R.M.); (A.C.)
| | - Veronica Lelli
- Department of Biology and Ecology University of Tuscia, 01100 Viterbo, Italy; (F.G.); (V.L.)
| | - Antonella Chiodo
- Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), 09124 Cagliari, Italy; (A.M.); (R.M.); (A.C.)
| | - Antonio Ragusa
- Department of Obstetrics and Gynecology, Ospedale San Giovanni Calibita, Fatebenefratelli, Isola Tiberina, Via di Ponte Quattro Capi, 39, 00186 Roma, Italy;
| | - Anna Maria Timperio
- Department of Biology and Ecology University of Tuscia, 01100 Viterbo, Italy; (F.G.); (V.L.)
- Correspondence:
| |
Collapse
|
4
|
Abstract
In the last years, 'omics' technologies, and especially metabolomics, emerged as expanding scientific disciplines and promising technologies in the characterization of several pathophysiological processes.In detail, metabolomics, able to detect in a dynamic way the whole set of molecules of low molecular weight in cells, tissues, organs, and biological fluids, can provide a detailed phenotypic portray, representing a metabolic "snapshot."Thanks to its numerous strength points, metabolomics could become a fundamental tool in human health, allowing the exact evaluation of individual metabolic responses to pathophysiological stimuli including drugs, environmental changes, lifestyle, a great number of diseases and other epigenetics factors.Moreover, if current metabolomics data will be confirmed on larger samples, such technology could become useful in the early diagnosis of diseases, maybe even before the clinical onset, allowing a clinical monitoring of disease progression and helping in performing the best therapeutic approach, potentially predicting the therapy response and avoiding overtreatments. Moreover, the application of metabolomics in nutrition could provide significant information on the best nutrition regimen, optimal infantile growth and even in the characterization and improvement of commercial products' composition.These are only some of the fields in which metabolomics was applied, in the perspective of a precision-based, personalized care of human health.In this review, we discuss the available literature on such topic and provide some evidence regarding clinical application of metabolomics in heart diseases, auditory disturbance, nephrouropathies, adult and pediatric cancer, obstetrics, perinatal conditions like asphyxia, neonatal nutrition, neonatal sepsis and even some neuropsychiatric disorders, including autism.Our research group has been interested in metabolomics since several years, performing a wide spectrum of experimental and clinical studies, including the first metabolomics analysis of human breast milk. In the future, it is reasonable to predict that the current knowledge could be applied in daily clinical practice, and that sensible metabolomics biomarkers could be easily detected through cheap and accurate sticks, evaluating biofluids at the patient's bed, improving diagnosis, management and prognosis of sick patients and allowing a personalized medicine. A dream? May be I am a dreamer, but I am not the only one.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU University of Cagliari, SS 554 km 4,500, 09042, Monserrato, CA, Italy
| |
Collapse
|
5
|
Carlson NS, Frediani JK, Corwin EJ, Dunlop A, Jones D. Metabolomic Pathways Predicting Labor Dystocia by Maternal Body Mass Index. AJP Rep 2020; 10:e68-e77. [PMID: 32140295 PMCID: PMC7056397 DOI: 10.1055/s-0040-1702928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the metabolic pathways activated in the serum of African-American women during late pregnancy that predicted term labor dystocia. Study Design Matched case-control study ( n = 97; 48 cases of term labor dystocia and 49 normal labor progression controls) with selection based on body mass index (BMI) at hospital admission and maternal age. Late pregnancy serum samples were analyzed using ultra-high-resolution metabolomics. Differentially expressed metabolic features and pathways between cases experiencing term labor dystocia and normal labor controls were evaluated in the total sample, among women who were obese at the time of labor (BMI ≥ 30 kg/m2), and among women who were not obese. Results Labor dystocia was predicted by different metabolic pathways in late pregnancy serum among obese (androgen/estrogen biosynthesis) versus nonobese African-American women (fatty acid activation, steroid hormone biosynthesis, bile acid biosynthesis, glycosphingolipid metabolism). After adjusting for maternal BMI and age in the total sample, labor dystocia was predicted by tryptophan metabolic pathways in addition to C21 steroid hormone, glycosphingolipid, and androgen/estrogen metabolism. Conclusion Metabolic pathways consistent with lipotoxicity, steroid hormone production, and tryptophan metabolism in late pregnancy serum were significantly associated with term labor dystocia in African-American women.
Collapse
Affiliation(s)
- Nicole S. Carlson
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, Georgia
| | | | - Elizabeth J. Corwin
- Department of Physiology, Columbia University School of Nursing, New York, New York
| | - Anne Dunlop
- Departments of Family and Preventive Medicine, Epidemiology, and Nursing, Emory University, Atlanta, Georgia
| | - Dean Jones
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Handelman SK, Romero R, Tarca AL, Pacora P, Ingram B, Maymon E, Chaiworapongsa T, Hassan SS, Erez O. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLoS One 2019; 14:e0224682. [PMID: 31726468 PMCID: PMC6855901 DOI: 10.1371/journal.pone.0224682] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In comparison to the non-pregnant state, the first trimester of pregnancy is characterized by systemic adaptation of the mother. The extent to which these adaptive processes are reflected in the maternal blood metabolome is not well characterized. OBJECTIVE To determine the differences between the plasma metabolome of non-pregnant and pregnant women before 16 weeks gestation. STUDY DESIGN This study included plasma samples from 21 non-pregnant women and 50 women with a normal pregnancy (8-16 weeks of gestation). Combined measurements by ultrahigh performance liquid chromatography/tandem mass spectrometry and by gas chromatography/mass spectrometry generated molecular abundance measurements for each sample. Molecular species detected in at least 10 samples were included in the analysis. Differential abundance was inferred based on false discovery adjusted p-values (FDR) from Mann-Whitney-Wilcoxon U tests <0.1 and a minimum median abundance ratio (fold change) of 1.5. Alternatively, metabolic data were quantile normalized to remove sample-to-sample differences in the overall metabolite abundance (adjusted analysis). RESULTS Overall, 637 small molecules met the inclusion criteria and were tested for association with pregnancy; 44% (281/637) of small molecules had significantly different abundance, of which 81% (229/281) were less abundant in pregnant than in non-pregnant women. Eight percent (14/169) of the metabolites that remained significant in the adjusted analysis also changed as a function of gestational age. A pathway analysis revealed enrichment in steroid metabolites related to sex hormones, caffeine metabolites, lysolipids, dipeptides, and polypeptide bradykinin derivatives (all, FDR < 0.1). CONCLUSIONS This high-throughput mass spectrometry study identified: 1) differences between pregnant vs. non-pregnant women in the abundance of 44% of the profiled plasma metabolites, including known and novel molecules and pathways; and 2) specific metabolites that changed with gestational age.
Collapse
Affiliation(s)
- Samuel K. Handelman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Detroit Medical Center, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian Ingram
- Metabolon Inc., Raleigh-Durham, North Carolina, United States of America
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Birchenall KA, Welsh GI, López Bernal A. Metabolite Changes in Maternal and Fetal Plasma Following Spontaneous Labour at Term in Humans Using Untargeted Metabolomics Analysis: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091527. [PMID: 31052173 PMCID: PMC6539865 DOI: 10.3390/ijerph16091527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022]
Abstract
The mechanism of human labour remains poorly understood, limiting our ability to manage complications of parturition such as preterm labour and induction of labour. In this study we have investigated the effect of labour on plasma metabolites immediately following delivery, comparing cord and maternal plasma taken from women who laboured spontaneously and delivered vaginally with women who were delivered via elective caesarean section and did not labour. Samples were analysed using ultra high-performance liquid chromatography-tandem mass spectrometry. Welch’s two-sample t-test was used to identify any significant differences. Of 826 metabolites measured, 26.9% (222/826) were significantly altered in maternal plasma and 21.1% (174/826) in cord plasma. Labour involves changes in many maternal organs and poses acute metabolic demands in the uterus and in the fetus and these are reflected in our results. While a proportion of these differences are likely to be secondary to the physiological demands of labour itself, these results present a comprehensive picture of the metabolome in the maternal and fetal circulations at the time of delivery and can be used to guide future studies. We discuss potential causal pathways for labour including endocannabinoids, ceramides, sphingolipids and steroids. Further work is necessary to confirm the specific pathways involved in the spontaneous onset of labour.
Collapse
Affiliation(s)
- Katherine A Birchenall
- Department of Obstetrics and Gynaecology, St Michael's Hospital, Bristol BS2 8EG, UK.
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| | - Gavin I Welsh
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| | - Andrés López Bernal
- Department of Obstetrics and Gynaecology, St Michael's Hospital, Bristol BS2 8EG, UK.
- Translational Health Sciences, University of Bristol, Bristol BS1 3NY, UK.
| |
Collapse
|
8
|
Barberini L, Palmas F, Fais MF, Mereu R, Noto A, Fattuoni C, Mais V, Chiodo A, Meloni A. Urinary profiles associated with bacterial metabolites from asymptomatic pregnant women with at term or preterm premature rupture of membranes: a pilot study. J Matern Fetal Neonatal Med 2019; 33:3279-3285. [PMID: 30646777 DOI: 10.1080/14767058.2019.1571031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Premature rupture of membranes (PROM) and preterm premature rupture of membranes (pPROM) are frequent conditions with a not fully understood multifactorial etiology. It has been suggested that infection may be the leading cause of pPROM. Metabolomics is nowadays recognized as a successful and versatile approach for the investigation of several pathological conditions, including pregnancy-related ones. However, collecting samples such as fetal fluids or placenta poses a limit on the clinical application of this strategy. Therefore, the aim of this study was to detect urinary metabolites that could be associated with bacterial infection in PROM and pPROM and to understand its role in these different conditions, using readily available samples such as urines.Methods: Urine samples were collected from pregnant women who experienced rupture of membranes: (1) at term (≥37 weeks) not in labor (NLPROM); (2) at term in labor (LPROM); (3) preterm (<37 weeks) not in labor (pPROM). Samples were analyzed using a GC-MS platform. Student's t-test, Pearson correlation coefficient, principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) were applied to observe differences between groups.Results: Results showed that lactic acid, erythritol, and ethanolamine levels were significantly higher in pPROM than in PROM (NLPROM + LPROM considered as one single group). These three metabolites might be associated with bacterial infections since they derive from bacterial metabolic processes and environments.Conclusions: This study might be useful to understand the mechanisms underlying the etiology of pPROM and PROM, and urine samples might represent a useful and readily available sample to discriminate preterm high-risk women.
Collapse
Affiliation(s)
- Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Palmas
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Francesca Fais
- Maternal Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), Cagliari, Italy
| | - Rossella Mereu
- Maternal Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Valerio Mais
- Department of Surgical Sciences, Division of Gynecology and Obstetrics, University of Cagliari, Cagliari, Italy
| | - Antonella Chiodo
- Department of Surgical Sciences, Division of Gynecology and Obstetrics, University of Cagliari, Cagliari, Italy
| | - Alessandra Meloni
- Maternal Neonatal Department, Obstetrics and Gynecology Unit, Azienda Ospedaliera Universitaria (AOU), Cagliari, Italy
| |
Collapse
|
9
|
Wu H, Liu J, Chen S, Zhao Y, Zeng S, Bin P, Zhang D, Tang Z, Zhu G. Jejunal Metabolic Responses to Escherichia coli Infection in Piglets. Front Microbiol 2018; 9:2465. [PMID: 30386317 PMCID: PMC6198047 DOI: 10.3389/fmicb.2018.02465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the jejunal metabolic variations in enterotoxigenic Escherichia coli (ETEC)-infected piglets. Piglets were infected with 1 × 1010 CFUs (colony-forming units) of ETEC W25K and assigned into diarrheal, recovered, control, and resistant groups. Jejunal samples were harvested at day 6 and metabolic profiles were analyzed via gas chromatography coupled to time-of-flight mass spectrometry (GC/TOFMS). The results showed that 33 metabolites in the jejunum were identified in ETEC-induced diarrhea, including amino acids, fatty acids, sugars, and organic acids. Compared with the control, resistant, and recovered piglets, diarrheal piglets showed higher concentrations of 4-aminobutyric acid (GABA) and glycine in the jejunum. Compared with the control and resistant piglets, six metabolites were markedly decreased in diarrheal piglets, including ornithine, asparagine, glutamine, citric acid, citrulline, and lysine. Collectively, this study provides insights into jejunal metabolic response to ETEC infection and ETEC induced diarrhea in piglets.
Collapse
Affiliation(s)
- Hucong Wu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiaqi Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dong Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhiyi Tang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Urinary 1H-NMR Metabolomics in the First Week of Life Can Anticipate BPD Diagnosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7620671. [PMID: 30050661 PMCID: PMC6046120 DOI: 10.1155/2018/7620671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 01/10/2023]
Abstract
Despite the advancements in medical knowledge and technology, the etiopathogenesis of bronchopulmonary dysplasia (BPD) is not yet fully understood although oxidative stress seems to play a role, leading to a very demanding management of these patients by the neonatologist. In this context, metabolomics can be useful in understanding, diagnosing, and treating this illness since it is one of the newest omics science that analyzes the metabolome of an individual through the investigation of biological fluids such as urine and blood. In this study, 18 patients admitted to the Neonatal Intensive Care Unit of the Cagliari University Hospital were enrolled. Among them, 11 patients represented the control group and 7 patients subsequently developed BPD. A sample of urine was collected from each patient at 7 days of life and analyzed through 1H-NMR coupled with multivariate statistical analysis. The discriminant metabolites between the 2 groups noted were alanine, betaine, trimethylamine-N-oxide, lactate, and glycine. Utilizing metabolomics, it was possible to detect the urinary metabolomics fingerprint of neonates in the first week of life who subsequently developed BPD. Future studies are needed to confirm these promising results suggesting a possible role of microbiota and oxidative stress, and to apply this technology in clinical practice.
Collapse
|
11
|
PROM and Labour Effects on Urinary Metabolome: A Pilot Study. DISEASE MARKERS 2018; 2018:1042479. [PMID: 29511388 PMCID: PMC5817378 DOI: 10.1155/2018/1042479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/24/2017] [Indexed: 01/22/2023]
Abstract
Since pathologies and complications occurring during pregnancy and/or during labour may cause adverse outcomes for both newborns and mothers, there is a growing interest in metabolomic applications on pregnancy investigation. In fact, metabolomics has proved to be an efficient strategy for the description of several perinatal conditions. In particular, this study focuses on premature rupture of membranes (PROM) in pregnancy at term. For this project, urine samples were collected at three different clinical conditions: out of labour before PROM occurrence (Ph1), out of labour with PROM (Ph2), and during labour with PROM (Ph3). GC-MS analysis, followed by univariate and multivariate statistical analysis, was able to discriminate among the different classes, highlighting the metabolites most involved in the discrimination.
Collapse
|