1
|
Dziwulska-Hunek A, Niemczynowicz A, Kycia RA, Matwijczuk A, Kornarzyński K, Stadnik J, Szymanek M. Stimulation of soy seeds using environmentally friendly magnetic and electric fields. Sci Rep 2023; 13:18085. [PMID: 37872189 PMCID: PMC10593769 DOI: 10.1038/s41598-023-45134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
The study analyses the impact of alternating (magnetic induction B = 30 mT for t = 60 s) and constant magnetic fields (B = 130 mT for t = 17 h) and alternating electric fields (electric current E = 5 kV/cm for t = 60 s) on various growth parameters of soy plants: the germination energy and capacity, plants emergence, the fresh mass of seedlings, protein content (Kjeldahl's method), and photosynthetic parameters (with MINI-PAM 2000 WALTZ Photosynthesis Yield Analyser and a SPAD-502 Chlorophyll Meter). Four cultivars were used: MAVKA, MERLIN, VIOLETTA, and ANUSZKA. Moreover, the advanced Machine Learning processing pipeline was proposed to distinguish the impact of physical factors on photosynthetic parameters. The use of electromagnetic fields had a positive impact on the germination rate in MERLIN seeds. The best results in terms of germination improvement were observed for alternating magnetic field stimulation in all cultivars (p > 0.05). For the VIOLETTA cultivar an increase (p > 0.05) in the emergence and overall number of plants as well as fresh mass was observed after electromagnetic field stimulation. For the MAVKA and MERLIN cultivars, the concentration of proteins in the leaves was noticeably higher in plants grown from seeds stimulated using a constant magnetic field.
Collapse
Affiliation(s)
- Agata Dziwulska-Hunek
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Agnieszka Niemczynowicz
- Department of Analysis and Differential Equations, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710, Olsztyn, Poland
| | - Radosław A Kycia
- Faculty of Computer Science and Telecommunications, Cracow University of Technology, 31-155, Kraków, Poland
- Department of Mathematics and Statistics, Masaryk Univeristy, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Krzysztof Kornarzyński
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Joanna Stadnik
- Department of Animal Material Technologies, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Mariusz Szymanek
- Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głeboka 28, 20-612, Lublin, Poland
| |
Collapse
|
2
|
Hafeez MB, Zahra N, Ahmad N, Shi Z, Raza A, Wang X, Li J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:8-23. [PMID: 35929950 DOI: 10.1111/plb.13459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The Earth's geomagnetic field (GMF) is an inescapable environmental factor for plants that affects all growth and yield parameters. Both strong and weak magnetic fields (MF), as compared to the GMF, have specific roles in plant growth and development. MF technology is an eco-friendly technique that does not emit waste or generate harmful radiation, nor require any external power supply, so it can be used in sustainable modern agriculture. Thus, exposure of plants to MF is a potential affordable, reusable and safe practice for enhancing crop productivity by changing physiological and biochemical processes. However, the effect of MF on plant physiological and biochemical processes is not yet well understood. This review describes the effects of altering MF conditions (higher or lower values than the GMF) on physiological and biochemical processes of plants. The current contradictory and inconsistent outcomes from studies on varying effects of MF on plants could be related to species and/or MF exposure time and intensity. The reviewed literature suggests MF have a role in changing physiological processes, such as respiration, photosynthesis, nutrient uptake, water relations and biochemical attributes, including genes involved in ROS, antioxidants, enzymes, proteins and secondary metabolites. MF application might efficiently increase growth and yield of many crops, and as such, should be the focus for future research.
Collapse
Affiliation(s)
- M B Hafeez
- College of Agronomy, Northwest A&F University, Yangling, China
| | - N Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - N Ahmad
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Z Shi
- College of Agronomy, Northwest A&F University, Yangling, China
| | - A Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - X Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - J Li
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Hassan S, Zeng XA, Khan MK, Farooq MA, Ali A, Kumari A, Mahwish, Rahaman A, Tufail T, Liaqat A. Recent developments in physical invigoration techniques to develop sprouts of edible seeds as functional foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.997261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For nutritional security, the availability of nutrients from food sources is a crucial factor. Global consumption of edible seeds including cereals, pulses, and legumes makes it a valuable source of nutrients particularly vitamins, minerals, and fiber. The presence of anti-nutritional factors forms complexes with nutrients, this complexity of the nutritional profile and the presence of anti-nutritional factors in edible seeds lead to reduced bioavailability of nutrients. By overcoming these issues, the germination process may help improve the nutrient profile and make them more bioavailable. Physical, physiological, and biological methods of seed invigoration can be used to reduce germination restraints, promote germination, enhance early crop development, to increase yields and nutrient levels through sprouting. During sprouting early start of metabolic activities through hydrolytic enzymes and resource mobilization causes a reduction in emergence time which leads to a better nutritional profile. The use of physical stimulating methods to increase the sprouting rate gives several advantages compared to conventional chemical-based methods. The advantages of physical seed treatments include environment-friendly, high germination rate, early seedling emergence, uniform seedling vigor, protection from chemical hazards, and improved yield. Different physical methods are available for seed invigoration viz. gamma irradiation, laser irradiation, microwaves, magnetic field, plasma, sound waves, and ultrasonic waves. Still, further research is needed to apply each technique to different seeds to identify the best physical method and factors for seed species along with different environmental parameters. The present review will describe the use and effects of physical processing techniques for seed invigoration.
Collapse
|
4
|
Changes in Growth and Production of Non-Psychotropic Cannabinoids Induced by Pre-Sowing Treatment of Hemp Seeds with Cold Plasma, Vacuum and Electromagnetic Field. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the effects of seed treatments with different stressors, such as cold plasma (CP), a vacuum and an electromagnetic field (EMF), on the in vitro germination of industrial hemp cv. Futura 75 were compared with the effects on germination in the field, plant growth, and the amount of major cannabinoids in the leaves and inflorescences of female plants. CP and EMF (but not vacuum) treatments improved in vitro seed germination, but had no impact on germination in the field. EMF treatment increased the weight of the above-ground part of male and female plants grown for 4 months by 65–70% and the number of female inflorescences by 70%. CP stimulated the growth of male plants (weight increased 1.4 times) but reduced the growth of female plants. Vacuum treatment did not induce changes in the growth of female and male plants. Vacuum and EMF treatments did not change the amount of cannabidiolic acid (CBDA), but CP decreased the CBDA content in hemp leaves by 41%. Vacuum treatment increased the amount of CBDA in female plant inflorescences by 26%. Thus, hemp seed treatment with EMF has a potential application for increasing the biomass of female plants. CP treatment can be used to increase male plant production while vacuum treatment can stimulate CBD production.
Collapse
|
5
|
De Souza-Torres A, Sueiro-Pelegrín L, Zambrano-Reyes M, Macías-Socarras I, González-Posada M, García-Fernández D. Extremely low frequency non-uniform magnetic fields induce changes in water relations, photosynthesis and tomato plant growth. Int J Radiat Biol 2020; 96:951-957. [PMID: 32369405 DOI: 10.1080/09553002.2020.1748912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To elucidate the effects during the vegetative growth of pre-sowing magnetic treatments on water relations, photosynthesis and plant growth in tomato (Vyta) plants under greenhouse conditions.Materials and methods: Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 10 min and at 80 mT (rms) for 5 min. Non-treated seeds were used as controls. Plants were grown in polystyrene trays and water relations, photosynthesis and plant growth were measured.Results: Plants from magnetically treated seeds maintained better leaf water status in terms of increases in leaf water potential, leaf osmotic potential, leaf turgor potential and relative water content, and decreases in stomatal conductance and transpiration rate. Net photosynthesis rate, chlorophyll a, chlorophyll b, carotenoids and total chlorophyll contents increase in plants from magnetically exposed seeds compared to controls. The MF treatments lead to a notable increase in root length, plant height, root and shoot dry mass, leaf area per plant, and root and shoot relative growth rates.Conclusions: Application of full-wave rectified sinusoidal non-uniform MF as a pre-sowing treatment has the potential to improve tomato plant vegetative growth through the enhancement of water relations and photosynthesis.
Collapse
Affiliation(s)
| | | | - Miguel Zambrano-Reyes
- Facultad de Ingeniería Agropecuaria, Universidad Laica Eloy Alfaro de Manabí, Manta, Ecuador
| | | | | | | |
Collapse
|
6
|
Katsenios N, Bilalis D, Efthimiadou A, Aivalakis G, Nikolopoulou AE, Karkanis A, Travlos I. Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. ScientificWorldJournal 2014; 2014:369745. [PMID: 25097875 PMCID: PMC4109073 DOI: 10.1155/2014/369745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/18/2014] [Accepted: 06/15/2014] [Indexed: 01/09/2023] Open
Abstract
The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences.
Collapse
|
8
|
Maffei ME. Magnetic field effects on plant growth, development, and evolution. FRONTIERS IN PLANT SCIENCE 2014; 5:445. [PMID: 25237317 PMCID: PMC4154392 DOI: 10.3389/fpls.2014.00445] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/18/2014] [Indexed: 05/20/2023]
Abstract
The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed.
Collapse
Affiliation(s)
- Massimo E. Maffei
- *Correspondence: Massimo E. Maffei, Department Life Sciences and Systems Biology, Plant Physiology-Innovation Centre, University of Turin, Via Quarello 15/A, I-10135 Turin, Italy e-mail:
| |
Collapse
|