1
|
Mukkukada Ravi R, Mani A, Rahim S, Anirudhan TS. A Self-Skin Permeable Doxorubicin Loaded Nanogel Composite as a Transdermal Device for Breast Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50407-50429. [PMID: 39259941 DOI: 10.1021/acsami.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Modern drug delivery research focuses on developing biodegradable nanopolymer systems. The present study proposed a polymer-based composite nanogel as a transdermal drug delivery system for the pH-responsive targeted and controlled delivery of anticancer drug doxorubicin (DOX). Nanogels have properties of both hydrogels and nanomaterials. The β-cyclodextrin-based nanogels can enhance the loading capacity of poorly soluble drugs and promote a sustained drug release. The β-cyclodextrin-grafted methacrylic acid conjugated hyaluronic acid composite nanogel was successfully synthesized. β-Cyclodextrin was first grafted onto methacrylic acid. The composite nanogel-based drug carrier was prepared by controlled radical polymerization (CRP) of β-cyclodextrin-grafted methacrylic acid with hyaluronic acid. The doxorubicin-loaded carrier was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, zeta potential analysis, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug loading and release efficiencies were carried out at different pH levels. The maximum drug loading and encapsulation efficiencies of the synthesized final nanogel composite material at pH 8.0 were 86.44 ± 2.12 and 96.07 ± 2.01%, respectively. The DOX-loaded final material showed a 90.0 ± 2.6% release percentage of DOX at pH 5.5, whereas at pH 7.4, the release percentage of DOX was observed to be only 35.0 ± 0.3%. In vitro swelling, degradation, hemocompatibility, drug release kinetics, cytotoxicity, apoptosis, cell colocalization, skin irritation, and skin permeation studies, along with in vivo pharmacokinetic studies, were performed to prove the efficacy of the synthesized nanogel composite as a transdermal carrier for doxorubicin.
Collapse
Affiliation(s)
- Rajeev Mukkukada Ravi
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Athira Mani
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Suriya Rahim
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - Thayyath Sreenivasan Anirudhan
- Department of Chemistry, School of Physical and Mathematical Sciences, Research Centre, University of Kerala, Kariavattom, Trivandrum 695 581, India
| |
Collapse
|
2
|
M Salah N, Elbedaiwy HM, Helmy MW, El-Salamouni NS. Topical amlodipine-loaded solid lipid nanoparticles for enhanced burn wound healing: A repurposed approach. Int J Pharm 2024; 662:124484. [PMID: 39033942 DOI: 10.1016/j.ijpharm.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Burn wounds are a complicated process with ongoing psychological and physical issues for the affected individuals. Wound healing consists of multifactorial molecular mechanisms and interactions involving; inflammation, proliferation, angiogenesis, and matrix remodeling. Amlodipine (ADB), widely used in cardiovascular disorders, demonstrated antioxidant and anti-inflammatory effects in some non-cardiovascular studies. It was reported that amlodipine is capable of promoting the healing process by regulation of collagen production, extracellular matrix, re-epithelialization and wound healing through its vasodilation and angiogenic activity. The objective of the current study is to appraise the wound healing capacity of amlodipine-loaded SLN (ADB-SLN) integrated into a hydrogel. The in-vitro characterization revealed that the optimized formulation was nanometric (190.4 ± 1.6 nm) with sufficiently high entrapment efficiency (88 % ± 1.4) and sustained ADB release (85.45 ± 4.45 % after 12 h). Furthermore, in-vivo evaluation was conducted on second-degree burns induced in male Sprague-Dawley rats. ADB-SLN gel revealed a high wound contraction rate and a significant improvement in skin regeneration and inflammatory biomarkers levels, confirming its efficiency in enhancing wound healing compared to other tested and commercial formulations. To conclude, the present findings proved that ADB-SLN integrated hydrogel offers a promising novel therapy for burn wound healing with a maximum therapeutic value.
Collapse
Affiliation(s)
- Nada M Salah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
3
|
Mattos Pereira V, Nair S. Targeting Mitochondrial ATP-Synthase: Evolving Role of Chromium as a Regulator of Carbohydrate and Fat Metabolism. Biol Trace Elem Res 2024; 202:1318-1324. [PMID: 38133723 DOI: 10.1007/s12011-023-04017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The micronutrient trivalent chromium, 3 + (Cr(III)), is postulated to play a role in carbohydrate, lipid, and protein metabolism. Although the mechanisms by which chromium mediates its actions are largely unknown, previous studies have suggested that pharmacological doses of chromium improve cardiometabolic symptoms by augmenting carbohydrate and lipid metabolism. Activation of AMP-activated protein kinase (AMPK) was among the many mechanisms proposed to explain the salutary actions of chromium on carbohydrate metabolism. However, the molecular pathways leading to the activation of AMPK by chromium remained elusive. In an elegant series of studies, Sun and coworkers recently demonstrated that chromium augments AMPK activation by binding to the beta-subunit of ATP synthase and inhibiting its enzymatic activity. This mini-review attempts to trace the evolving understanding of the molecular mechanisms of chromium leading to the hitherto novel pathway unraveled by Sun and coworkers and its potential implication to our understanding of the biological actions of chromium.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA
| | - Sreejayan Nair
- University of Wyoming, School of Pharmacy, and the Biomedical Sciences Graduate Program, College of Health Sciences, Laramie, WY, 82072, USA.
| |
Collapse
|
4
|
Mahmood MA, Madni A, Rehman M, Rahim MA, Jabar A. Ionically Cross-Linked Chitosan Nanoparticles for Sustained Delivery of Docetaxel: Fabrication, Post-Formulation and Acute Oral Toxicity Evaluation. Int J Nanomedicine 2019; 14:10035-10046. [PMID: 31908458 PMCID: PMC6929931 DOI: 10.2147/ijn.s232350] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction Polymeric nanoparticles are potential carriers for the efficient delivery of hydrophilic and hydrophobic drugs due to their multifaceted applications. Docetaxel is relatively less hydrophobic and twice as potent as paclitaxel. Like other taxane chemotherapeutic agents, docetaxel is not well tolerated and shows toxicity in the patients. Nanoencapsulation of potent chemotherapeutic agents has been shown to improve tolerability and therapeutic outcome. Therefore, the present study was designed to fabricate chitosan and sodium tripolyphosphate (STPP) based on ionically cross-linked nanoparticles for sustained release of docetaxel. Methods Nanoparticles were prepared by the ionic-gelation method by dropwise addition of the STPP solution into the chitosan solution in different ratios. CNPs were characterized for post-formulation parameters like size, zeta potential, scanning electron microscope (SEM), FTIR, DSC/TGA, pXRD, and in-vitro drug release, as well as for acute oral toxicity studies in Wistar rats. Results and discussion The optimized docetaxel loaded polymeric nanoparticles were in the size range (172.6nm–479.65 nm), and zeta potential (30.45–35.95 mV) required to achieve enhanced permeation and retention effect. In addition, scanning electron microscopy revealed rough and porous surface, whereas, FTIR revealed the compatible polymeric nanoparticles. Likewise, the thermal stability was ensured through DSC and TG analysis, and powder X-ray diffraction analysis exhibited solid-state stability of the docetaxel loaded nanoparticles. The in-vitro drug release evaluation in phosphate buffer saline (pH 7.4) showed sustained release pattern, i.e. 51.57–69.93% within 24 hrs. The data were fitted to different release kinetic models which showed Fickian diffusion as a predominant release mechanism (R2= 0.9734–0.9786, n= 0.264–0.340). Acceptable tolerability was exhibited by acute oral toxicity in rabbits and no abnormality was noted in growth, behavior, blood biochemistry or histology and function of vital organs. Conclusion Ionically cross-linked chitosan nanoparticles are non-toxic and biocompatible drug delivery systems for sustained release of chemotherapeutic agents, such as docetaxel.
Collapse
Affiliation(s)
- Muhammad Ahmad Mahmood
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.,Drug Testing Laboratory, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mubashar Rehman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Abdur Rahim
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Jabar
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
5
|
Barkat K, Ahmad M, Minhas MU, Khalid I, Malik NS. Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03062-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Haseeb MT, Bashir S, Hussain MA, Ashraf MU, Erum A, Naeem-ul-Hassan M. Acute toxicity study of a polysaccharide based hydrogel from linseed for potential use in drug delivery system. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
7
|
Bora NS, Pathak MP, Mandal S, Mazumder B, Policegoudra R, Raju PS, Chattopadhyay P. Safety assessment and toxicological profiling of a novel combinational sunprotective dermal formulation containing melatonin and pumpkin seed oil. Regul Toxicol Pharmacol 2017; 89:1-12. [DOI: 10.1016/j.yrtph.2017.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/23/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
|
8
|
Barkat K, Ahmad M, Minhas MU, Khalid I. Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate-co
-poly(methacrylic acid) for colorectal cancer: Its toxicological evaluation. J Appl Polym Sci 2017. [DOI: 10.1002/app.45312] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kashif Barkat
- Faculty of Pharmacy and Alternative Medicine; Islamia University of Bahawalpur; Punjab 63100 Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy and Alternative Medicine; Islamia University of Bahawalpur; Punjab 63100 Pakistan
| | - Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine; Islamia University of Bahawalpur; Punjab 63100 Pakistan
| | - Ikrima Khalid
- Faculty of Pharmacy and Alternative Medicine; Islamia University of Bahawalpur; Punjab 63100 Pakistan
| |
Collapse
|
9
|
Novotnik B, Ščančar J, Milačič R, Filipič M, Žegura B. Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells. CHEMOSPHERE 2016; 154:124-131. [PMID: 27043378 DOI: 10.1016/j.chemosphere.2016.03.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Chromium (Cr) and ethylenediaminetetraacetate (EDTA) are common environmental pollutants and can be present in high concentrations in surface waters at the same time. Therefore, chelation of Cr with EDTA can occur and thereby stable Cr(III)-EDTA complex is formed. Since there are no literature data on Cr(III)-EDTA toxicity, the aim of our work was to evaluate and compare Cr(III)-EDTA cytotoxic and genotoxic activity with those of Cr(VI) and Cr(III)-nitrate in human hepatoma (HepG2) cell line. First the effect of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on cell viability was studied in the concentration range from 0.04 μg mL(-1) to 25 μg mL(-1) after 24 h exposure. Further the influence of non-cytotoxic concentrations of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA on DNA damage and genomic stability was determined with the comet assay and cytokinesis block micronucleus cytome assay, respectively. Cell viability was decreased only by Cr(VI) at concentrations above 1.0 μg mL(-1). Cr(VI) at ≥0.2 μg mL(-1) and Cr(III) at ≥1.0 μg mL(-1) induced DNA damage, while after Cr(III)-EDTA exposure no formation DNA strand breaks was determined. Statistically significant formation of micronuclei was induced only by Cr(VI) at ≥0.2 μg mL(-1), while no influence on the frequency of nuclear buds nor nucleoplasmic bridges was observed at any exposure. This study provides the first evidence that Cr(III)-EDTA did not induce DNA damage and had no influence on the genomic stability of HepG2 cells.
Collapse
Affiliation(s)
- Breda Novotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Večna pot 111, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Večna pot 111, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Staniek H, Krejpcio Z, Wieczorek D. The Effects of High Dietary Doses of Chromium(III) Complex with Propionic Acid on Nutritional and Selected Blood Indices in Healthy Female Rats. Biol Trace Elem Res 2016; 171:192-200. [PMID: 26432449 DOI: 10.1007/s12011-015-0518-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022]
Abstract
People taking dietary supplements are usually determined to lose weight, supplement nutrition or reduce the risk of illness and negative effects of their state of health. Chromium(III) supplementation influence body composition and mass, glucose and lipid metabolism and it enhance insulin action. This fact could be of general interest because diabetes mellitus is an increasing health problem in many countries. The study describes the effects of high dietary doses of chromium(III) complex with propionic acid [Cr3] (from 100 to 1000 mg Cr · kg(-1) diet) on the organisms of healthy female rats, with special regard to overall nutritional, carbohydrate, lipid and blood biochemical and morphological and haematological indices. The study was carried out on 30 10-week-old female Wistar rats, which were divided into five equal groups (six animals in each): the control group and four groups of tested animals which had free access to the diet supplemented with 100, 200, 500 and 1000 mg Cr · kg(-1) (equivalent of 10, 20, 50 and 100 mg Cr · kg body weight (b.w.) · day(-1)), given as [Cr3O(O2CCH2CH3)6(H2O)3]⋅NO3, also known as Cr3, for 4 weeks. There were no significant differences in body mass gains, feeding efficiency ratio, internal organ masses or blood serum glucose concentrations, except for some changes in the serum triglycerides concentration, which decreased in the rats that received 500 and 1000 mg Cr · kg(-1) diet, as opposed to the group treated with 200 mg Cr · kg(-1) diet. The dietary supplementation of Cr3 for 4 weeks at doses of 100 to 1000 mg Cr · kg(-1) diet did not affect overall nutritional indices and most blood biochemical, morphological and haematological indices.
Collapse
Affiliation(s)
- Halina Staniek
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Zbigniew Krejpcio
- Department of Human Nutrition and Hygiene, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Daria Wieczorek
- Department of Technology and Instrumental Analysis, Faculty of Commodity Science, Poznań University of Economics, al. Niepodległości 10, 61-875, Poznań, Poland
| |
Collapse
|
11
|
Saiyed ZM, Sengupta K, Krishnaraju AV, Trimurtulu G, Lau FC, Lugo JP. Safety and toxicological evaluation of Meratrim®: An herbal formulation for weight management. Food Chem Toxicol 2015; 78:122-9. [DOI: 10.1016/j.fct.2015.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/26/2023]
|
12
|
Monnot AD, Christian WV, Paustenbach DJ, Finley BL. Correlation of blood Cr(III) and adverse health effects: Application of PBPK modeling to determine non-toxic blood concentrations. Crit Rev Toxicol 2014; 44:618-37. [DOI: 10.3109/10408444.2014.926472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3595] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
14
|
Sengupta K, Mishra AT, Rao MK, Sarma KV, Krishnaraju AV, Trimurtulu G. Efficacy of an herbal formulation LI10903F containing Dolichos biflorus and Piper betle extracts on weight management. Lipids Health Dis 2012; 11:176. [PMID: 23270333 PMCID: PMC3551693 DOI: 10.1186/1476-511x-11-176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022] Open
Abstract
Background A novel herbal formulation LI10903F, alternatively known as LOWAT was developed based on its ability to inhibit adipogenesis and lipogenesis in 3T3-L1 adipocytes model. The clinical efficacy and tolerability of LI10903F were evaluated in an eight-week, randomized, double-blind, placebo-controlled, clinical trial in 50 human subjects with body mass index (BMI) between 30 and 40 kg/m2 (clinical trial registration number: ISRCTN37381706). Participants were randomly assigned to either a placebo or LI10903F group. Subjects in the LI10903F group received 300 mg of herbal formulation thrice daily, while subjects in the placebo group received 300 mg of placebo capsules thrice daily. All subjects were provided a standard diet (2,000 kcal daily) and participated in a moderate exercise of 30 min walk for five days a week. Additionally, the safety of this herbal formulation was evaluated by a series of acute, sub-acute toxicity and genotoxicity studies in animals and cellular models. Results After eight weeks of supplementation, statistically significant net reductions in body weight (2.49 kg; p=0.00005) and BMI (0.96 kg/m2; p=0.00004) were observed in the LI10903F group versus placebo group. Additionally, significant increase in serum adiponectin concentration (p=0.0076) and significant decrease in serum ghrelin concentration (p=0.0066) were found in LI10903F group compared to placebo group. Adverse events were mild and were equally distributed between the two groups. Interestingly, LI10903F showed broad spectrum safety in a series of acute, sub-acute toxicity and genotoxicity studies. Conclusions Results from the current research suggest that LI10903F or LOWAT is well-tolerated, safe and effective for weight management.
Collapse
Affiliation(s)
- Krishanu Sengupta
- Laila Impex R&D Center, Unit-I, Phase-III, J. Autonagar, Vijayawada, India.
| | | | | | | | | | | |
Collapse
|
15
|
Zheng JC, Lei N, He QC, Hu W, Jin JG, Meng Y, Deng NH, Meng YF, Zhang CJ, Shen FB. PEGylation is effective in reducing immunogenicity, immunotoxicity, and hepatotoxicity of α-momorcharinin vivo. Immunopharmacol Immunotoxicol 2012; 34:866-73. [DOI: 10.3109/08923973.2012.666979] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Meng Y, Liu B, Lei N, Zheng J, He Q, Li D, Zhao X, Shen F. Alpha-momorcharin possessing high immunogenicity, immunotoxicity and hepatotoxicity in SD rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:590-598. [PMID: 22172326 DOI: 10.1016/j.jep.2011.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED Momordica charantia L., a genus of Momordica Linn. of the family Cucurbitaceae, commonly known as bitter melon, has been widely planted in China, Southeast Asia, Turkey and other areas, and has been used as a medicine for a long time. Alpha-momorcharin (α-MMC) extracted and purified from bitter melon seeds has significant anti-tumor and anti-virus effects, and has potential toxicity as well, especially when taken overdose. However, up to date studies on its safety evaluation are still insufficient. AIMS OF THE STUDY The immunogenicity, immunotoxicity and general toxicity of α-MMC were investigated in rats and guinea-pigs, and the potential toxic effects of the agent on the body were also examined. MATERIALS AND METHODS The major ribosome-inactivating protein was isolated by column chromatographies from the protein extracted from bitter melon seeds, and was verified as α-MMC. After rats were immunized by α-MMC, titers of specific antibody to α-MMC in immunized rats serum were detected by indirect ELISA. Guinea-pigs and rats immunized with α-MMC were used to evaluate the active systemic anaphylaxis and passive cutaneous anaphylaxis induced by α-MMC relatively. α-MMC of 6.25 mg/kg, 2.08 mg/kg and 0.70 mg/kg was administered to rats every 2 days. Five weeks later, animals were sacrificed, and then, biochemical examination, analysis of bone marrow and peripheral blood cells, and histopathologic examination were performed. RESULTS The ribosome-inactivating protein isolated and purified from bitter melon seeds was identified as α-MMC. It induced high titer (1:46.4) of specific IgG and high positive results of the active systemic anaphylaxis and passive cutaneous anaphylaxis tests in animals. With the time of the α-MMC administration increasing, the body weights of the animals administered with α-MMC of 6.25 mg/kg decreased significantly, and point necrosis was also observed in liver cells, along with abnormal findings in serum chemistry, hematology and bone marrow histopathology test. The toxic effect lessened with the decrease of the dose of α-MMC and further reduced after the convalescence stage. CONCLUSIONS The results of the study show that α-MMC has high immunogenicity and immunotoxicity, and can cause obvious organic liver lesion.
Collapse
Affiliation(s)
- Yao Meng
- West China Hospital Laboratory of Nanomedicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The current status and likely future directions of complexes of V(V/IV), Cr(III), Mo(VI), W(VI), Zn(II), Cu(II), and Mn(III) as potential oral drugs against type 2 diabetes are reviewed. We propose a unified model of extra- and intracellular mechanisms of anti-diabetic efficacies of V(V/IV), Mo(VI), W(VI), and Cr(III), centred on high-oxidation-state oxido/peroxido species that inhibit protein tyrosine phosphatases (PTPs) involved in insulin signalling. The postulated oxidative mechanism of anti-diabetic activity of Cr(III) via carcinogenic Cr(VI/V) (which adds to safety concerns) is consistent with recent clinical trials on Cr(III) picolinate, where activity was apparent only in patients with poorly controlled diabetes (high oxidative stress), and the correlation between the anti-diabetic activities and ease of oxidation of Cr(III) supplements and their metabolites in vivo. Zn(II) and Cu(II) anti-diabetics act via different mechanisms and are unlikely to be used as specific anti-diabetics due to their diverse and unpredictable biological activities. Hence, future research directions are likely to centre on enhancing the bioavailability and selectivity of V(V/IV), Mo(VI), or W(VI) drugs. The strategy of potentiating circulating insulin with metal ions has distinct therapeutic advantages over interventions that stimulate the release of more insulin, or use insulin mimetics, because of many adverse side-effects of increased levels of insulin, including increased risks of cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, NSW, Australia
| | | |
Collapse
|
18
|
Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2010; 2:70. [PMID: 21167072 PMCID: PMC3023745 DOI: 10.1186/1758-5996-2-70] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/19/2010] [Indexed: 12/17/2022] Open
Abstract
Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed.
Collapse
Affiliation(s)
| | - JeanRobert Rapin
- Faculté de Médecine/Pharmacie, Université de Bourgogne, 3 Bld jeanne d'Arc, F-21000 Dijon (France
| |
Collapse
|