1
|
Gómez EM, Casali CI, Del Carmen Fernández M, Verstraeten SV. Tl(I) and Tl(III) induce reticulum stress in MDCK cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104192. [PMID: 37348771 DOI: 10.1016/j.etap.2023.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The effects of the exposure of proliferating MDCK cells to thallium [Tl(I) or Tl(III)] on cell viability and proliferation were investigated. Although Tl stopped cell proliferation, the viability was >95%. After 3h, two autophagy markers (SQSTM-1 expression and LC3β localization) were altered, and at 48h increased expression of SQSTM-1 (60%) and beclin-1 (50-100%) were found. At 24h, the expression of endoplasmic reticulum (ER) stress markers ATF-6 and IRE-1 were increased in 100% and 150%, respectively, accompanied by XBP-1 splicing and nuclear translocation. At 48h, major ultrastructure abnormalities were found, including ER enlargement and cytoplasmic vacuolation which was not prevented by protein synthesis inhibition. Increased PHB (85% and 40% for Tl(I) and Tl(III), respectively) and decreased β-tubulin (45%) expression were found which may be related to the promotion of paraptosis. In summary, Tl(I) and Tl(III) promoted ER stress and probably paraptosis in MDCK cells, impairing their proliferation.
Collapse
Affiliation(s)
- Emanuel Morel Gómez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular. Buenos Aires. Argentina
| | - Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular. Buenos Aires. Argentina; Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires. Argentina
| | - María Del Carmen Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular. Buenos Aires. Argentina; Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires. Argentina
| | - Sandra V Verstraeten
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Superior. Buenos Aires. Argentina; Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires. Argentina.
| |
Collapse
|
2
|
Tong X, Fu X, Yu G, Qu H, Zou H, Song R, Ma Y, Yuan Y, Bian J, Gu J, Liu Z. Polystyrene exacerbates cadmium-induced mitochondrial damage to lung by blocking autophagy in mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37022104 DOI: 10.1002/tox.23804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaohui Fu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Gengsheng Yu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Huayi Qu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Hui Zou
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Ruilong Song
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yonggang Ma
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yan Yuan
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianchun Bian
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| |
Collapse
|
4
|
Jamil B, Abbasi R, Abbasi S, Imran M, Khan SU, Ihsan A, Javed S, Bokhari H, Imran M. Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-Resistant Bacterial Pathogens and Cytotoxicity Studies. Front Microbiol 2016; 7:1580. [PMID: 27757108 PMCID: PMC5048087 DOI: 10.3389/fmicb.2016.01580] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/21/2016] [Indexed: 01/09/2023] Open
Abstract
Natural antimicrobial agents, particularly essential oils present an excellent alternative to current antibiotics due to their potent and broad-spectrum antimicrobial potential, unique mechanisms of action and low tendency to induce resistance. However their potential as a viable therapeutic alternative is greatly compromised due to their hydrophobic and volatile nature. The objective of the current research was to explore the anti-pathogenic potential of essential oils in a bio-based nano-carrier system. Six different essential oils were tested on multidrug-resistant bacterial pathogens. However, cardamom oil was selected for nano-encapsulation because of most potent anti-microbial activity. Cardamom oil loaded chitosan nano-particles were prepared by ionic gelation method with an encapsulation efficiency of more than 90% and size was estimated to be 50–100 nm. The Zeta potential was more than +50 mV that indicate a stable nano-dispersion. Cytotoxicity analysis indicated non haemolytic and non-cytotoxic behaviour on human corneal epithelial cells and HepG2 cell lines. Cardamom oil loaded chitosan nano-particles were found to exhibit excellent anti-microbial potential against extended spectrum β lactamase producing Escherichia coli and methicillin resistant Staphylococcus aureus. Our results suggested safety and efficacy of cardamom oil loaded chitosan nano-particles for treating multidrug-resistant pathogens hence offer an effective alternative to current antibiotic therapy.
Collapse
Affiliation(s)
- Bushra Jamil
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Rashda Abbasi
- Cancer Research, Institute of Biomedical and Genetic Engineering Islamabad, Pakistan
| | | | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University Islamabad, Pakistan
| | - Siffat U Khan
- PARC Institute for Advanced Studies in Agriculture (PIASA), National Agricultural Research Centre (NARC) Islamabad, Pakistan
| | - Ayesha Ihsan
- Industrial Biotechnology Division, National Institute of Biotechnology and Genetic Engineering Faisalabad, Pakistan
| | - Sundus Javed
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| |
Collapse
|
5
|
Fang JY, Wang PW, Huang CH, Hung YY, Pan TL. Evaluation of the hepatotoxic risk caused by lead acetate via skin exposure using a proteomic approach. Proteomics 2014; 14:2588-99. [PMID: 25210813 DOI: 10.1002/pmic.201400068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/19/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
Lead compounds exhibit a high degree of cytotoxicity and carcinogenicity. We evaluated the impact of lead acetate on the liver by skin exposure as well as the changes in protein profiles reflecting pathogenic processes. Functional proteomic tools showed that the most meaningful protein changes were involved in protein folding, ER stress, and apoptosis in the presence of an organic lead compound. Treatment with lead acetate also elicits intracellular ROS levels as well as carbonyl modification of chaperone proteins, suggesting that lead might trigger the unfolded protein response due to oxidative stress. Lead application induced ER stress, as indicated by the promotion of GRP78 and by increased expression of the transcription factors ATF6, IRE1α, and PERK. Moreover, upregulation of GRP75 may participate in lead-caused hepatic cytotoxicity while abrogation of GRP75 appears to attenuate the inhibition of cell growth. Our findings demonstrate that accumulation of organic lead in the liver can induce oxidative imbalance and protein impairment that may result in ER stress followed by liver injuries. Hepatic proteome profiles delineate a finer picture of protein networks and metabolic pathways primarily involved in lead-initiated hepatic toxicity via skin exposure.
Collapse
Affiliation(s)
- Jia-You Fang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Dinkova-Kostova AT. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. SCIENTIFICA 2012; 2012:606104. [PMID: 24278719 PMCID: PMC3820647 DOI: 10.6064/2012/606104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 05/28/2023]
Abstract
The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|