1
|
Bermúdez-Oria A, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Antioxidant activity and inhibitory effects on angiotensin I-converting enzyme and α-glucosidase of trans-p-coumaroyl-secologanoside (comselogoside) and its inclusion complex with β-cyclodextrin. Bioaccessibility during simulated in vitro gastrointestinal digestion. Food Chem 2024; 460:140724. [PMID: 39121769 DOI: 10.1016/j.foodchem.2024.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study explored the impact of complexing comselogoside (COM) with β-cyclodextrin (β-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: β-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 μM) and notable ACE inhibition (IC50 119.4 μM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by β-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 μg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its β-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
2
|
Gökçek İ. Cardioprotective effect of oleuropein in a cisplatin-induced cardiotoxicity model in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3403-3410. [PMID: 37955692 DOI: 10.1007/s00210-023-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
This study investigated the cardioprotective effect of oleuropein against cisplatin-induced cardiac damage in terms of inflammatory, oxidative stress and cardiac parameters. In this study, 40 female Wistar albino rats were divided into four groups: control, cisplatin, oleuropein and cisplatin+oleuropein. To establish the experimental model, oleuropein (200 mg/kg) was administered for 14 days and cisplatin (7 mg/kg) was administered as a single dose on the seventh day. Cisplatin increased MDA cardiac parameters (CK, CK-MB and cTnI) and inflammatory cytokines (TNF-α, IL-1β and IL-6) in cardiac tissue and decreased GSH, GSH-Px and catalase levels. On the other hand, oleuropein improved cardiac parameters and decreased inflammatory cytokine and oxidative stress levels in cardiac tissue.
Collapse
Affiliation(s)
- İshak Gökçek
- Veterinary Faculty, Veterinary Physiology Department, Hatay Mustafa Kemal University, Hatay, 31000, Turkey.
| |
Collapse
|
3
|
Belghith Y, Kallel I, Rosa M, Stathopoulos P, Skaltsounis LA, Allouche N, Chemat F, Tomao V. Intensification of Biophenols Extraction Yield from Olive Pomace Using Innovative Green Technologies. Biomolecules 2022; 13:65. [PMID: 36671450 PMCID: PMC9855426 DOI: 10.3390/biom13010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023] Open
Abstract
Olive pomace is the main by-product generated by the olive oil production process. Although toxic to the environment, olive pomace is an important source of natural antioxidants due to its high content of phenolic compounds. The aim of the current study is to maximize the extraction yields of the main phenolic compounds present in olive pomace using innovative green technologies. For this purpose, the present work is divided into two parts. The first part is based on a solubility study of targeted phenolic compounds in various ethanol/water ratios at two different temperatures (20 °C and 50 °C). A computational prediction using COSMO-RS software was applied for the calculation of eventual solubility, which was subsequently confirmed by practical experiments. The determination of the optimal extraction conditions of solvent ratio (EtOH/H2O) (60:40 v/v) and temperature (50 °C) led to the second part of the work, which concerns the intensification of extraction yields. Furthermore, various green extractions using innovative technologies, including accelerated solvent extraction (ASE), ultrasound with its both system (probe (UAE-P) and bath (UAE-B)), bead milling (BM) and microwave (MAE), were carried out and then compared to conventional maceration (CM). Results showed that ASE was the most effective method for extracting phenolic compounds from dried olive pomace powder (5.3 milligrams of tyrosol equivalent (TE) per gram of dried olive pomace powder (DOP)) compared to CM (3.8 mg TE/g DOP).
Collapse
Affiliation(s)
- Yosra Belghith
- Natural Substances Team, Laboratory of Organic Chemistry LR17ES08, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia
- MicroNut Team, INRA, UMR408, Université d’Avignon, F-84000 Avignon, France
| | - Imen Kallel
- Laboratory of Toxicology-Environmental Microbiology and Health Research (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Maxence Rosa
- MicroNut Team, INRA, UMR408, Université d’Avignon, F-84000 Avignon, France
| | - Panagiotis Stathopoulos
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, NKUA, 15771 Athens, Greece
| | - Leandros A. Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, NKUA, 15771 Athens, Greece
| | - Noureddine Allouche
- Natural Substances Team, Laboratory of Organic Chemistry LR17ES08, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia
| | - Farid Chemat
- GREEN Team, INRA, UMR408, Université d’Avignon, F-84000 Avignon, France
| | - Valérie Tomao
- MicroNut Team, INRA, UMR408, Université d’Avignon, F-84000 Avignon, France
| |
Collapse
|
4
|
Ghazouani L, Khdhiri E, Elmufti A, Zarei A, Feriani A, Baaziz I, Hajji R, Abid M, Ammar H, Abid S, Allouche N, Mnafgui K, Ramazani A, Tlili N. A Novel Synthetized sulfonylhydrazone coumarin (E)-4-methyl-N'-(1-(3-oxo-3H-benzo[f]chromen-2- yl)ethylidene)benzenesulfonohydrazide Protect against Isoproterenol Induced Myocardial Infarction in Rats by attenuating Oxidative damage, Biological Changes, and Electrocardiogram. Clin Exp Pharmacol Physiol 2022; 49:1010-1026. [PMID: 35717592 DOI: 10.1111/1440-1681.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Coumarins and their derivatives are becoming a potential source for new drug discovery due to their vast array of biological activities. The present study was designed to investigate the cardioprotective effects of a newly synthesized coumarin, symbolized as 5,6-PhSHC, against cardiac remodeling process in isoproterenol (ISO) induced myocardial infarction (MI) in male Wistar rats by evaluating hematological, biochemical, and cardiac biomarkers. Rats were pre/co-treated with 5,6-PhSHC or clopidogrel (150 μg/kg body weight) daily for a period of 7 days and then MI was induced by injecting ISO (85 mg/kg body weight), at an interval of 24 hours for 2 consecutive days, on 6th and 7th days. The in vivo exploration indicated that the injection of 5,6-PhSHC improved the electrocardiographic (ECG) pattern and prevented severe heart damages by reducing leakage of the cardiac injury markers, such as troponin-T (cTn-T), lactate dehydrogenase (LDH), and creatine kinase-MB. The cellular architecture of cardiac sections, altered in the myocardium of infracted rats, was reversed by 5,6-PhSHC treatment. Results showed that injection of 5,6-PhSHC elicited significant cardioprotective effects by prevention of myocardium cell necrosis and inflammatory cells infiltration, along with marked decrease in plasma levels of fibrinogen. In addition, the total cholesterol, triglyceride, LDL-c, and HDL profiles underwent remarkable beneficial changes. It was also interesting to note that 5,6-PhSHC enhanced the antioxidative defense mechanisms by increasing myocardial glutathione (GSH) level, superoxide dismutase (SOD), and catalase (CAT) activities, together with reducing the levels of thiobarbituric-acid-reactive substances (TBARS), when compared with ISO-induced rats. Taken together, these findings suggested a beneficial role for 5,6-PhSHC against ISO-induced MI in rats. Furthermore, in silico analysis showed that 5,6-PhSHC pocess high computational affinities (E-value > - 9.0 kcal/mol) against cyclooxygenase-2 (PDB-ID: 1CX2), vitamin K epoxide reductase (PDB-ID: 3KP9), glycoprotein IIb/IIIa (PDB-ID: 2VDM) and catalase (PDB-ID: 1DGF). Therefore, the present study provided promising data that the newly synthesized coumarin can be useful in the design and synthesis of novel drug against Myocardial infarction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lakhdar Ghazouani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Afoua Elmufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Armin Zarei
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Intissar Baaziz
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Internal Medicine Department, Sidi Bouzid Hospital, Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Jouf, Saudi Arabia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax, Tunisia
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Nizar Tlili
- Higher Institute of Sciences and Technology of Environment of Borj Cedria, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
6
|
Contreras MDM, Gómez-Cruz I, Feriani A, Alwasel S, Harrath AH, Romero I, Castro E, Tlili N. Hepatopreventive properties of hydroxytyrosol and mannitol-rich extracts obtained from exhausted olive pomace using green extraction methods. Food Funct 2022; 13:11915-11928. [DOI: 10.1039/d2fo00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxytyrosol and mannitol rich extracts from exhausted olive pomace were obtained by green extraction methodologies. Supplementation of these extracts alleviated CCl4-induced hepatic damage and protected DNA.
Collapse
Affiliation(s)
- María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems. Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh 11451, Saudi Arabia
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| |
Collapse
|
7
|
Menezes RCR, Peres KK, Costa-Valle MT, Faccioli LS, Dallegrave E, Garavaglia J, Dal Bosco SM. Oral administration of oleuropein and olive leaf extract has cardioprotective effects in rodents: A systematic review. Rev Port Cardiol 2021; 41:167-175. [DOI: 10.1016/j.repc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 10/19/2022] Open
|
8
|
Lo Giudice V, Faraone I, Bruno MR, Ponticelli M, Labanca F, Bisaccia D, Massarelli C, Milella L, Todaro L. Olive Trees By-Products as Sources of Bioactive and Other Industrially Useful Compounds: A Systematic Review. Molecules 2021; 26:5081. [PMID: 34443669 PMCID: PMC8399450 DOI: 10.3390/molecules26165081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
The need to produce an ever-increasing quantity of material products and food resulting from the planet globalization process has contributed to the spread of modern agriculture based on a linear production resulting in the generation of tons of waste. This huge amount of waste is generally accumulated in landfills, causing different environmental problems. Hence, researchers moved on to study the processes used to recover agro-industrial by-products within a circular and sustainable bio-economy concept. A systematic quest on Scopus and PubMed databases was performed to identify the data available to date on recycling agro-industrial by-products of Olea europaea L. This systematic review summarizes the knowledge regarding the use of olive trees by-products for producing animal feed, biocomposites, bioethanol, cellulose pulp, activated carbon, and as a fuel source for energy production. Furthermore, the data regarding the potential biological activity of extracts from olive roots, wood, bark, and pruning were analyzed. Olive trees by-products are, indeed, rich in molecules with antioxidant, antimicrobial, cardioprotective, and anticancer activity, representing a promising candidate for treat several human diseases.
Collapse
Affiliation(s)
- Valentina Lo Giudice
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.G.); (M.R.B.); (L.T.)
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (M.P.); (F.L.)
- Spinoff BioActiPlant s.r.l., Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Roberta Bruno
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.G.); (M.R.B.); (L.T.)
| | - Maria Ponticelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (M.P.); (F.L.)
| | - Fabiana Labanca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (M.P.); (F.L.)
| | - Donatella Bisaccia
- Italian National Research Council—Water Research Institute, Viale F. De Blasio 5, 70123 Bari, Italy; (D.B.); (C.M.)
| | - Carmine Massarelli
- Italian National Research Council—Water Research Institute, Viale F. De Blasio 5, 70123 Bari, Italy; (D.B.); (C.M.)
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.F.); (M.P.); (F.L.)
| | - Luigi Todaro
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (V.L.G.); (M.R.B.); (L.T.)
| |
Collapse
|
9
|
Khdhiri E, Mnafgui K, Ncir M, Feriani A, Ghazouani L, Hajji R, Jallouli D, Abid M, Jamoussi K, Allouche N, Ammar H, Abid S. Cardiopreventive capacity of a novel (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide against isoproterenol-induced myocardial infarction by moderating biochemical, oxidative stress, and histological parameters. J Biochem Mol Toxicol 2021; 35:e22747. [PMID: 33624406 DOI: 10.1002/jbt.22747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
This study is carried out to assess the cardiopreventive effect of (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide or SHC, a novel synthesized coumarin, against myocardial infarction induced by isoproterenol (ISO). The SHC compound was identified and characterized by spectral methods (infrared, 1 H NMR [nuclear magnetic resonance], 13 C NMR, Nuclear Overhauser Effect Spectroscopy, and high-resolution mass spectroscopy). Male Wistar rats were divided into four groups: Control, ISO (rats were injected subcutaneously by 85 mg/kg body weight [BW] of isoproterenol at Days 6 and 7 of the experience), ISO + SHC (150 µg/kg BW, orally for 7 days) and ISO + acenocoumarol (150 µg/kg BW, orally for 7 days). Results showed that ISO induced a remarkable alteration of electrocardiogram (ECG) pattern and increases of plasma cardiac troponin T, creatine kinase-MB, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, lactate dehydrogenase, aspartate transaminase, and malondialdehyde. In addition, ISO reduced the high-density lipoprotein-cholesterol content and the activities of superoxide dismutase and glutathione peroxidase, with the induction of myocardial necrosis. However, SHC administration revealed a significant decrease in cardiac dysfunction markers, restored normal ECG pattern, as well as improving lipids parameters. Moreover, SHC treatment remarkably alleviated the cardiac oxidative stress and the myocardial remodeling process. Overall, the SHC offers good protection from acute myocardial infarction through the antioxidant capacity.
Collapse
Affiliation(s)
- Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Ncir
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Sidi Bouzid 9100, Tunisie, Université de Sousse, Faculté de Médecine de Sousse, Sousse 4200, Tunisie
| | - Dana Jallouli
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| | - Kamel Jamoussi
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| |
Collapse
|
10
|
Khdhiri E, Mnafgui K, Ghazouani L, Feriani A, Hajji R, Bouzanna W, Allouche N, Bazureau JP, Ammar H, Abid S. (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide protecting rat heart tissues from isoproterenol toxicity: Evidence from in vitro and in vivo tests. Eur J Pharmacol 2020; 881:173137. [PMID: 32380016 DOI: 10.1016/j.ejphar.2020.173137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
The current study was aimed to assess the protective effect of a new molecule (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide, denoted 1c, against cardiac remodeling process in isoproterenol (Isop) induced myocardial infarction (MI) in rats. Male Wistar rats were randomly divided into four groups, control, Isop (85 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI and pretreated animals with acenocoumarol (Ace) (150 μg/kg bw) and 1c (150 μg/kg bw) by oral administration during 7 days and injected with isoproterenol (Isop + Ace) and (Isop + 1c) groups. Results in vitro showed that 1c is endowed with potent inhibition of angiotensin-converting enzyme (ACE) with an IC50 39.12 μg/ml. The in vivo exploration evidenced alteration in the ECG pattern, notable cardiac hypertrophy and increase in plasma level of fibrinogen, troponin-T, CK-MB and LDH, AST and ALT by 171%, 300%, 50%, 64% and 75% respectively with histological myocardium necrosis and cells inflammatory infiltration. However, pre-treatment with 1c improved the ECG pattern reduced significantly the cardiac dysfunction markers and ameliorated the thrombolytic process by decreasing fibrinogen level as compared to untreated infracted rats. Overall, (E)-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide 1c could be used as anticoagulant agent to prevent thrombosis in acute myocardial infarction.
Collapse
Affiliation(s)
- Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia
| | - Kais Mnafgui
- Laboratoire de Physiologie Animale, Faculté des Sciences de Sfax, Université de Sfax, P.O. Box 95, Sfax, 3052, Tunisia
| | - Lakhdar Ghazouani
- Unité de Recherche en Biochimie Macromoléculaire et de Génétique, Faculté des Sciences de Gafsa, 2112, Gafsa, Tunisia
| | - Anouar Feriani
- Unité de Recherche en Biochimie Macromoléculaire et de Génétique, Faculté des Sciences de Gafsa, 2112, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Walid Bouzanna
- École d'Enseignement Hospitalier d'Habib Thamer, 8 Ali Ben Ayed St., Montefleury, 1089, Tunis, Tunisia
| | - Noureddine Allouche
- Laboratoire de Chimie des Substances Naturelles (LR17/ES08), Faculté des Sciences de Sfax, Université de Sfax, Route Soukra, BP1171, 3000, Sfax, Tunisia
| | - Jean-Pierre Bazureau
- Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Université de Rennes 1, Bât. 10A, Room 207, Campus de Beaulieu, CS 74205, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia
| | - Souhir Abid
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, 3038, Sfax, Tunisia; Département de Chimie, Collège des Sciences et des Arts, Université de Jouf, Al Qurayyat, Al Jawf, Saudi Arabia
| |
Collapse
|
11
|
(E)-N'-(1-(7-Hydroxy-2-Oxo-2H-Chromen-3-Yl) Ethylidene) Benzohydrazide, a Novel Synthesized Coumarin, Ameliorates Isoproterenol-Induced Myocardial Infarction in Rats through Attenuating Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2432918. [PMID: 32215169 PMCID: PMC7079259 DOI: 10.1155/2020/2432918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The present study was directed to investigate the effect of precotreatment with (E)-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide (7-hyd.HC), a novel potent synthesized coumarin, on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. The hydrazone compound was characterized by IR, 1D, and 2D NMR analyses. Experimental induction of MI in rats was established by ISO (85 mg/kg/day, s.c) for two consecutive days (6th and 7th days). 7-hyd.HC or sintrom was given for 7 days prior and simultaneous to ISO injection. 7-hyd.HC offered a cardiopreventive effect by preventing heart injury marker leakage (LDH, ALT, AST, CK-MB, and cTn-I) from cardiomyocytes and normalizing cardiac function and ECG pattern, as well as improving lipid profile (TC, TG, LDL-C, and HDL-C), which were altered by ISO administration. Moreover, 7-hyd.HC precotreatment significantly mitigated the oxidative stress biomarkers, as evidenced by the decrease of lipid peroxidation and the increased level of the myocardial GSH level together with the SOD, GSH-Px, and catalase activities. 7-hyd.HC inhibited the cardiac apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase-3 genes. In addition, 7-hyd.HC reduced the elevated fibrinogen rate and better prevented the myocardial necrosis and improved the interstitial edema and neutrophil infiltration than sintrom. Overall, 7-hyd.HC ameliorated the severity of ISO-induced myocardial infarction through improving the oxidative status, attenuating apoptosis, and reducing fibrinogen production. The 7-hyd.HC actions could be mediated by its antioxidant, antiapoptotic, and anti-inflammatory capacities.
Collapse
|
12
|
Micucci M, Bolchi C, Budriesi R, Cevenini M, Maroni L, Capozza S, Chiarini A, Pallavicini M, Angeletti A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. PHYTOCHEMISTRY 2020; 170:112222. [PMID: 31810054 DOI: 10.1016/j.phytochem.2019.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hypertension has become the leading risk factor for worldwide cardiovascular diseases. Conventional pharmacological treatment, after both dietary and lifestyle changes, is generally proposed. In this review, we present the antihypertensive properties of phytocomplexes from thirteen plants, long ago widely employed in ethnomedicines and, in recent years, increasingly evaluated for their activity in vitro and in vivo, also in humans, in comparison with synthetic drugs acting on the same systems. Here, we focus on the demonstrated or proposed mechanisms of action of such phytocomplexes and of their constituents proven to exert cardiovascular effects. Almost seventy phytochemicals are described and scientifically sound pertinent literature, published up to now, is summarized. The review emphasizes the therapeutic potential of these natural substances in the treatment of the 'high normal blood pressure' or 'stage 1 hypertension', so-named according to the most recent European and U.S. guidelines, and as a supplementation in more advanced stages of hypertension, however needing further validation by clinical trial intensification.
Collapse
Affiliation(s)
- M Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - C Bolchi
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - R Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Cevenini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - L Maroni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - S Capozza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - A Chiarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - A Angeletti
- Unit of Nephrology, Dialysis and Transplantation, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, S.Orsola Malpighi Hospital, Bologna Italy
| |
Collapse
|
13
|
Ghazouani L, Khdhiri E, Elmufti A, Feriani A, Tir M, Baaziz I, Hajji R, Ben Mansour H, Ammar H, Abid S, Mnafgui K. Cardioprotective effects of ( E)-4-hydroxy-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide: a newly synthesized coumarin hydrazone against isoproterenol-induced myocardial infarction in a rat model. Can J Physiol Pharmacol 2019; 97:989-998. [PMID: 31464528 DOI: 10.1139/cjpp-2019-0085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study was carried out to evaluate the effect of pretreatment and co-treatment with a newly synthesized coumarin hydrazone, (E)-4-hydroxy-N'-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)benzohydrazide (hereinafter EK6), against isoproterenol-induced myocardial infarction in rats. Changes in biochemistry, cardiac biomarkers, electrocardiography, and histopathology after treatment with EK6 or acenocoumarol (Sintrom) were studied. Animals were randomly divided into 4 groups: vehicle control (C), isoproterenol + Sintrom (ISO + Sin), isoproterenol + EK6 (ISO + EK6), and isoproterenol (ISO). Myocardial infarction was induced by subcutaneous ISO administration at a dose of 85 mg·kg-1·day-1 with a drug-free interval of 24 h on days 6 and 7. Treatment with ISO led to significant elevation (p < 0.05) in serum levels of cardiac injury biomarkers, namely cardiac troponin-T, lactate dehydrogenase, creatine kinase-MB, alanine aminotransferase, and aspartate aminotransferase compared with levels in the vehicle control. A change in the lipid profile was also observed as a significant increase in total cholesterol and triglycerides. Furthermore, ISO caused significant alterations in the electrocardiogram pattern, including significant ST-segment elevation, significant decreased R wave amplitude, and significant increase in heart rate (16%) as well as marked changes in the histopathology of the heart tissue. Pretreatment and co-treatment with newly synthesized coumarin hydrazone restored all ISO-induced biochemical, lipid, cardiac, and histopathological changes in rats with myocardial infarction.
Collapse
Affiliation(s)
- Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Emna Khdhiri
- Laboratory of Applied Chemistry HCGP, Faculty of Science, University of Sfax, 3038 Sfax, Tunisia
| | - Afoua Elmufti
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Meriam Tir
- Research Unit of Physiology and Aquatic Environment, Faculty of Science of Tunis, University Campus, El Manar I, 2092 Tunis, Tunisia
| | - Intissar Baaziz
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Raouf Hajji
- Internal Medicine Department, Sidi Bouzid Hospital, Ibn El Jazzar Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Processes Applied to the Environment (APAE), Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir, Tunisia
| | - Houcine Ammar
- Laboratory of Applied Chemistry HCGP, Faculty of Science, University of Sfax, 3038 Sfax, Tunisia
| | - Souhir Abid
- Laboratory of Applied Chemistry HCGP, Faculty of Science, University of Sfax, 3038 Sfax, Tunisia.,Chemistry Department, College of Science and Arts, Jouf University, Al Qurayyat, Al Jawf, Saudi Arabia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
| |
Collapse
|
14
|
Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2018; 19:ijms19020493. [PMID: 29414845 PMCID: PMC5855715 DOI: 10.3390/ijms19020493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 12/28/2022] Open
Abstract
Many studies reported that air pollution particulate matter (PM) exposure was associated with myocardial infarction (MI). Acrolein representing the unsaturated aldehydes, the main component of PM, derives from the incomplete combustion of wood, plastic, fossil fuels and the main constitute of cigarette smoking. However, the effect of acrolein on MI remains not that clear. In the current study, the effect of acrolein-exacerbated MI was investigated. In vivo, male Sprague–Dawley rats received olive leaf extract (OLE) followed by acrolein, then isoprenaline (ISO) was received by subcutaneous injection to induce MI. Results showed that the expression levels of GRP78 and CHOP, two major components of endoplasmic reticulum (ER) stress were higher in the combination of acrolein and ISO than those in ISO treatment. The apoptosis marker, Bax, was also higher while the anti-apoptosis indicator, Bcl2 expression was lower both at protein and mRNA levels in the combination group. Also, the acrolein-protein adducts and myocardial pathological damage increased in the combination of acrolein and ISO relative to the ISO treatment. Besides, cardiac parameters, ejection fraction (EF) and fractional shortening (FS) were reduced more significantly when acrolein was added than in ISO treatment. Interestingly, all the changes were able to be ameliorated by OLE. Since hydroxytyrosol (HT) and oleuropein (OP) were the main components in OLE, we next investigated the effect of HT and OP on cardiomyocyte H9c2 cell apoptosis induced by acrolein through ER stress and Bax pathway. Results showed that GRP78, CHOP and Bax expression were upregulated, while Bcl2 expression was downregulated both at the protein and mRNA levels, when the H9c2 cells were treated with acrolein. In addition, pretreatment with HT can reverse the expression of GRP78, CHOP, Bax and Bcl2 on the protein and mRNA levels, while there was no effect of OP on the expression of GRP78 and CHOP on the mRNA levels. Overall, all these results demonstrated that OLE and the main components (HT and OP) could prevent the negative effects of acrolein on myocardium and cardiomyocytes.
Collapse
|
15
|
Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomed Pharmacother 2017; 94:1145-1166. [PMID: 28826162 DOI: 10.1016/j.biopha.2017.08.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/09/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Modern medicine has been used to treat myocardial infarction, a subset of cardiovascular diseases, and have been relatively effective but not without adverse effects. Consequently, this issue has stimulated interest in the use of natural products, which may be equally effective and better tolerated. Many studies have investigated the cardioprotective effect of natural products, such as plant-derived phytochemicals, against isoproterenol (ISO)-induced myocardial damage; these have produced promising results on the basis of their antioxidant, anti-atherosclerotic, anti-apoptotic and anti-inflammatory activities. This review briefly introduces the pathophysiology of myocardial infarction (MI) and then addresses the progress of natural product research towards its treatment. We highlight the promising applications and mechanisms of action of plant extracts, phytochemicals and polyherbal formulations towards the treatment of ISO-induced myocardial damage. Most of the products displayed elevated antioxidant levels with decreased oxidative stress and lipid peroxidation, along with restoration of ionic balance and lowered expression of myocardial injury markers, pro-inflammatory cytokines, and apoptotic parameters. Likewise, lipid profiles were positively altered and histopathological improvements could be seen from, for example, the better membrane integrity, decreased necrosis, edema, infarct size, and leukocyte infiltration. This review highlights promising results towards the amelioration of ISO-induced myocardial damage, which suggest the direction for future research on natural products that could be used to treat MI.
Collapse
Affiliation(s)
- Zheng Wei Wong
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | | | - Srinivasan Ramamurthy
- International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Wilayah Persekutuan, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Zhang JY, Yang Z, Fang K, Shi ZL, Ren DH, Sun J. Oleuropein prevents the development of experimental autoimmune myocarditis in rats. Int Immunopharmacol 2017; 48:187-195. [PMID: 28525856 DOI: 10.1016/j.intimp.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/28/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Oleuropein (OLE) is a natural secoiridoid that is derived from Olea europaea. OLE possesses cardioprotective effects in experimental models of hypertension, myocardial infarction, atherosclerosis and hyperlipidaemia. In the present study, the effects of OLE on experimental autoimmune myocarditis (EAM) were evaluated. EAM in rats were induced by subcutaneous injections of porcine cardiac myosin. Cardiac function parameters, myocardial pathology, myocardial inflammatory cell infiltration and nuclear factor kappa-B (NF-κB) expression were measured. Our data showed that the postmyocarditis rats exhibited increased left ventricular end systolic diameters, left ventricular end diastolic diameters, left ventricular end-diastolic pressures (LVEDP), and decreased ejection fractions. However, OLE significantly suppressed these changes in EAM rats. Histological analysis revealed that myosin induced miliary foci of discolouration on endocardial surfaces and extensive myocardial injuries with inflammatory cell infiltration were significantly improved by OLE therapy. A definitive positive correlation between the histological scores and LVEDP was observed. Moreover, OLE inhibited CD4+, CD8+ cells and macrophage infiltration in myocardium and decreased the serum production of tumour necrosis factor-a (TNF-a), interleukin-1β (IL-1β) and IL-6 in EAM rats. Expectedly, the myocardial levels of NF-κB p65, p-IκBa, IKKa were significantly attenuated by OLE, indicating the inhibitory effects of OLE on the NF-κB pathway. Furthermore, OLE decreased the myocardial expressions of phosphorylated-p38 MAPK, phosphorylated-ERK, and did not change the levels of p38 MAPK and ERK in EAM rats. Collectively, our results suggest that OLE effectively prevents the development of myocarditis, at least in part, by inhibiting the MAPKs and NF-κB mediated inflammatory responses.
Collapse
Affiliation(s)
- Jia-Ying Zhang
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China
| | - Zheng Yang
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China
| | - Kun Fang
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China
| | - Zhan-Li Shi
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China
| | - Dan-Hong Ren
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China
| | - Jing Sun
- Department of Critical Care Medicine, Hang Zhou Red Cross Hospital, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
17
|
Mnafgui K, Hajji R, Derbali F, Gammoudi A, Khabbabi G, Ellefi H, Allouche N, Kadri A, Gharsallah N. Anti-inflammatory, Antithrombotic and Cardiac Remodeling Preventive Effects of Eugenol in Isoproterenol-Induced Myocardial Infarction in Wistar Rat. Cardiovasc Toxicol 2017; 16:336-44. [PMID: 26391896 DOI: 10.1007/s12012-015-9343-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate the antithrombotic, anti-inflammatory and anti-cardiac remodeling properties of eugenol in isoproterenol-induced myocardial infarction in rats. Male Wistar rats were randomly divided into four groups, control, iso [100 mg/kg body weight was injected subcutaneously into rats at an interval of 24 h for 2 days (6th and 7th day) to induce MI] and pretreated animals with clopidogrel (0.2 mg/kg) and eugenol (50 mg/kg) orally for 7 days and intoxicated with isoproterenol (Iso + Clop) and (Iso + EG) groups. Isoproterenol-induced myocardial infarcted rats showed notable changes in the ECG pattern, increase in heart weight index, deterioration in the hemodynamic function and rise in plasma level of troponin-T, CK-MB and LDH and ALT by 316, 74, 172 and 45 %, respectively, with histological myocardium necrosis and cells inflammatory infiltration. In addition, significant increases in plasma levels of inflammatory biomarkers such as fibrinogen, α1, α2, β1, β2 and γ globulins with decrease level of albumin were observed in infarcted rats as compared to normal ones. Else, the angiotensin-converting enzyme (ACE) activity in plasma, kidney and heart of the isoproterenol-induced rats was significantly increased by 34, 47 and 93 %, respectively, as compared to normal group. However, the administration of eugenol induced a clear improvement in cardiac biomarkers injury, reduced inflammatory mediators proteins, increased heart activities of superoxide dismutase and glutathione peroxidase with reduce in thiobarbituric acid-reactive substances content and inhibition of ventricular remodeling process through inhibition of ACE activity. Overall, eugenol evidences high preventive effects from cardiac remodeling process.
Collapse
Affiliation(s)
- Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, P.O. Box 95, 3052, Sfax, Tunisia.
- Department of Internal medicine, Hospital of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia.
| | - Raouf Hajji
- Department of Internal medicine, Hospital of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia
| | - Fatma Derbali
- Department of Internal medicine, Hospital of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia
| | - Anis Gammoudi
- Department of Urology, Hospital of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia
| | - Gaddour Khabbabi
- Department of Nephrology, Hospital of Sidi Bouzid, 9100, Sidi Bouzid, Tunisia
| | - Hedi Ellefi
- Department of Cardiology, Centre Hospitalier Intercommunal Robert Ballanger, Boulevard Robert Ballanger, 93600, Aulnay-Sous-Bois, France
| | - Noureddine Allouche
- Laboratory of Chemistry of Natural Products, Faculty of Sciences of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Adel Kadri
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| | - Neji Gharsallah
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, B.P. 1171, 3000, Sfax, Tunisia
| |
Collapse
|
18
|
Souilem S, Fki I, Kobayashi I, Khalid N, Neves MA, Isoda H, Sayadi S, Nakajima M. Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1834-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|