1
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
2
|
The Differences in the Levels of Oxidative Status Marker and Soluble CD95 in Patients with Moderate to Severe COPD during an Exacerbation and a Stable Period. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2105406. [PMID: 34925689 PMCID: PMC8677381 DOI: 10.1155/2021/2105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Studying the features of changes in markers of oxidative stress (OS) and inflammation indicators in COPD patients depending on the degree of bronchial obstruction is one of the priority directions for improving the prognosis and monitoring of the course of this pathology. We conducted a comparative investigation of changes in markers of OS and apoptosis at the systemic and local levels in patients with moderate to severe COPD during exacerbation and stable phase. 105 patients with COPD aged 46-67 and 21 healthy nonsmoking volunteers comparable in age were examined. COPD patients were divided into four groups: moderate COPD (GOLDII) during the exacerbation (GOLDIIex,
) and in the stable phase (GOLDIIst,
), severe COPD (GOLDIII) during the exacerbation (GOLDIIIex,
), and in the stable phase (GOLDIIIst,
). We studied the levels of such lipid peroxidation (LPO) products as diene conjugates (DC) and Schiff bases (SB) and parameters of induced chemiluminescence (Imax, total light sum-S, Imax/S) in blood serum, as well as sCD95 concentration in blood and exhaled breath condensate (EBC). The relationship between the values of the OS system indicators with sCD95, as well as with the parameters of lung function, was investigated. Multidirectional changes in OS indicator levels in COPD patients depending on the severity of obstructive airway disorders have been established. The maximum values of DC (
), Imax (
RLU), and Imax/S (
) were typical for patients with moderate COPD, while the highest SB level (
RU) was observed in severe COPD during an exacerbation. The exacerbation of the disease was characterized by an increase in DC concentration in both GOLDIIex (
RU) and GOLDIIIex (
RU) compared to the stable moderate and severe COPD (
RU and
RU, respectively,
). The established decrease in high values of DC, Imax, Imax/S, and sCD95 and an increase in SB concentration in GOLD III can serve as quantitative indicators of the prognosis of the severity of the disease. The serum concentration of sCD95 in GOLDIIex (
U/ml) and GOLDIIst (
U/ml) did not differ from the control group (
U/ml,
). In patients with
during the exacerbation and stable phase, the serum levels of Imax/S (
and
) and sCD95 (
U/ml and
U/ml) were lower than the values of healthy volunteers (
and
U/ml, respectively,
). A positive correlation between sCD95 concentration and airway obstruction degree in all examined COPD patients was established. The revealed numerous associations between sCD95 and OS marker levels in GOLDIII indicate a relationship between systemic radical stress and apoptosis processes both in the respiratory tract and the whole body under conditions of severe inflammation. The established correlations between the values of DC, Imax, and sCD95 in the blood serum and the lung function parameters in all studied patients allow us to consider these indicators as additional prognostic indicators of disease intensification. Our work results help clarify the participation and detail of FRO and apoptosis processes in developing pathophysiological features in moderate to severe COPD in different periods and, accordingly, improve the efficiency of diagnosis and treatment of the disease.
Collapse
|
3
|
Chatterji A, Banerjee D, Billiar TR, Sengupta R. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases. Free Radic Biol Med 2021; 172:604-621. [PMID: 34245859 DOI: 10.1016/j.freeradbiomed.2021.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
S-nitrosylation is a very fundamental post-translational modification of protein and non-protein thiols due the involvement of it in a variety of cellular processes including activation/inhibition of several ion channels such as ryanodine receptor in the cardiovascular system; blood vessel dilation; cGMP signaling and neurotransmission. S-nitrosothiol homeostasis in the cell is tightly regulated and perturbations in homeostasis result in an altered redox state leading to a plethora of disease conditions. However, the exact role of S-nitrosylated proteins and nitrosative stress metabolites in inflammation and in inflammation modulation is not well-reviewed. The cell utilizes its intricate defense mechanisms i.e. cellular denitrosylases such as Thioredoxin (Trx) and S-nitrosoglutathione reductase (GSNOR) systems to combat nitric oxide (NO) pathology which has also gained current attraction as novel anti-inflammatory molecules. This review attempts to provide state-of-the-art knowledge from past and present research on the mechanistic role of nitrosative stress intermediates (RNS, OONO-, PSNO) in pulmonary and autoimmune diseases and how cellular denitrosylases particularly GSNOR and Trx via imparting opposing effects can modulate and reduce inflammation in several health and disease conditions. This review would also bring into notice the existing gaps in current research where denitrosylases can be utilized for ameliorating inflammation that would leave avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Ajanta Chatterji
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Debasmita Banerjee
- Department of Molecular Biology and Biotechnology, University of Kalyani, Block C, Nadia, Kalyani, West Bengal, 741235, India
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 5213, USA
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
4
|
The State of the Nitric Oxide Cycle in Respiratory Tract Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4859260. [PMID: 33133346 PMCID: PMC7591941 DOI: 10.1155/2020/4859260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
This review describes the unique links of the functioning of the nitric oxide cycle in the respiratory tract in normal and pathological conditions. The concept of a nitric oxide cycle has been expanded to include the NO-synthase and NO-synthase-independent component of its synthesis and the accompanying redox cascades in varying degrees of reversible reactions. The role of non-NO-synthase cycle components has been shown. Detailed characteristics of substrates for the synthesis of nitric oxide (NO) in the human body, which can be nitrogen oxides, nitrite and nitrate anions, and organic nitrates, as well as nitrates and nitrites of food products, are given. The importance of the human microbiota in the nitric oxide cycle has been shown. The role of significant components of nitrite and nitrate reductase systems in the nitric oxide cycle and the mechanisms of their activation and deactivation (participation of enzymes, cofactors, homeostatic indicators, etc.) under various conditions have been determined. Consideration of these factors allows for a detailed understanding of the mechanisms underlying pathological conditions of the respiratory system and the targeting of therapeutic agents. The complexity of the NO cycle with multidirectional cascades could be best understood using dynamic modeling.
Collapse
|
5
|
Soodaeva S, Kubysheva N, Klimanov I, Nikitina L, Batyrshin I. Features of Oxidative and Nitrosative Metabolism in Lung Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1689861. [PMID: 31249640 PMCID: PMC6556356 DOI: 10.1155/2019/1689861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Respiratory diseases are accompanied by intensification of free radical processes at different levels of the biological body organization. Simultaneous stress and suppression of various parts of antioxidant protection lead to the development of oxidative stress (OS) and nitrosative stress (NS). The basic mechanisms of initiation and development of the OS and NS in pulmonary pathology are considered. The antioxidant defense system of the respiratory tract is characterized. The results of the NS and OS marker study in various respiratory diseases are presented. It is shown that NS and OS are multilevel complex-regulated processes, existing and developing in inseparable connection with a number of physiological and pathophysiological processes. The study of NS and OS mechanisms contributes to the improvement of the quality of diagnosis and the development of therapeutic agents that act on different pathogenetic stages of the disease.
Collapse
Affiliation(s)
- Svetlana Soodaeva
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420000, Russia
| | - Igor Klimanov
- Pulmonology Scientific Research Institute under FMBA of Russia, Orekhovyy Bul'var 28, Moscow 115682, Russia
| | - Lidiya Nikitina
- Khanty-Mansiysk-Yugrа State Medical Academy, Mira St., 40, KMAD-Yugry, Khanty-Mansiysk 628007, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| |
Collapse
|
6
|
Kubysheva N, Soodaeva S, Novikov V, Eliseeva T, Li T, Klimanov I, Kuzmina E, Baez-Medina H, Solovyev V, Ovsyannikov DY, Batyrshin I. Soluble HLA-I and HLA-II Molecules Are Potential Prognostic Markers of Progression of Systemic and Local Inflammation in Patients with COPD. DISEASE MARKERS 2018; 2018:3614341. [PMID: 30598706 PMCID: PMC6288564 DOI: 10.1155/2018/3614341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022]
Abstract
Soluble molecules of the major histocompatibility complex play an important role in the development of various immune-mediated diseases. However, there is not much information on the participation of these proteins in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of our work was to determine the content of soluble molecules of the major histocompatibility complex of classes I and II (sHLA-I and sHLA-II) in the exhaled breath condensate (EBC) and in the blood serum in patients with moderate to severe COPD during the exacerbation and stable phase. We investigated 105 patients (male) with COPD aged 46-67 and 21 healthy nonsmoking volunteers (male) comparable in age. The content of sHLA-I and sHLA-II molecules was studied using ELISA. We found an increase in the level of sHLA-I and sHLA-II molecules in EBC, as well as an enhancement in the serum content of sHLA-II in all the examined COPD patients compared to healthy nonsmoking volunteers. The revealed negative correlation between the serum concentration of sHLA-II and values of FEV1 and FEV1/FVC in all examined patients with COPD gives a possibility to consider the content of these proteins as an additional systemic marker of disease severity. The maximum endobronchial and serum concentrations of sHLA-I and sHLA-II were detected in patients with severe COPD during the exacerbation. The negative associations between the content of these molecules in EBC and serum and the parameters of lung function in patients with severe COPD were established. These findings suggest a pathogenetic role of sHLA-I and sHLA-II molecules in the mechanisms of the development and progression of local and systemic inflammation in COPD.
Collapse
Affiliation(s)
- Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St. 18, Kazan 420000, Russia
| | - Svetlana Soodaeva
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
| | - Viktor Novikov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | - Tatyana Eliseeva
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Timur Li
- Central Clinical Hospital of RAS, Litovskiy Blvd. 1A, Moscow 117593, Russia
| | - Igor Klimanov
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
| | - Elena Kuzmina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Héctor Baez-Medina
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Valery Solovyev
- Kazan Federal University, Kremlyovskaya St. 18, Kazan 420000, Russia
| | - Dmitry Yu. Ovsyannikov
- Medical Institute, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| |
Collapse
|
7
|
Kubysheva N, Postnikova L, Soodaeva S, Novikov V, Eliseeva T, Batyrshin I, Li T, Klimanov I, Chuchalin A. Relationship of the Content of Systemic and Endobronchial Soluble Molecules of CD25, CD38, CD8, and HLA-I-CD8 and Lung Function Parameters in COPD Patients. DISEASE MARKERS 2017; 2017:8216723. [PMID: 28848245 PMCID: PMC5564111 DOI: 10.1155/2017/8216723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/15/2017] [Accepted: 07/02/2017] [Indexed: 02/03/2023]
Abstract
The definition of new markers of local and systemic inflammation of chronic obstructive pulmonary disease (COPD) is one of the priority directions in the study of pathogenesis and diagnostic methods improvement for this disease. We investigated 91 patients with COPD and 21 healthy nonsmokers. The levels of soluble CD25, CD38, CD8, and HLA-I-CD8 molecules in the blood serum and exhaled breath condensate (EBC) in moderate-to-severe COPD patients during exacerbation and stable phase were studied. An unidirectional change in the content of sCD25, sCD38, and sCD8 molecules with increasing severity of COPD was detected. The correlations between the parameters of lung function and sCD8, sCD25, and sHLA-I-CD8 levels in the blood serum and EBC were discovered in patients with severe COPD. The findings suggest a pathogenetic role of the investigated soluble molecules of the COPD development and allow considering the content of sCD8, sCD25, and sHLA-I-CD8 molecules as additional novel systemic and endobronchial markers of the progression of chronic inflammation of this disease.
Collapse
Affiliation(s)
- Nailya Kubysheva
- Kazan Federal University, Kremlyovskaya St, 18, Kazan 420000, Russia
| | - Larisa Postnikova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Svetlana Soodaeva
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya, 8- 2, Moscow, Russia
| | - Viкtor Novikov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | - Tatyana Eliseeva
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square 10/1, Nizhny Novgorod 603005, Russia
| | - Ildar Batyrshin
- Centro de Investigación en Computación, Instituto Politécnico Nacional (CIC-IPN), Av. Juan de Dios Bátiz, Esq. Miguel Othón de Mendizábal S/N, Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Timur Li
- Central Clinical Hospital of RAS, Litovskiy Blvd. 1A, Moscow 117593, Russia
| | - Igor Klimanov
- Pulmonology Research Institute, 11-Parkovaya 32, Moscow 105077, Russia
| | | |
Collapse
|
8
|
Ilyicheva T, Durymanov A, Susloparov I, Kolosova N, Goncharova N, Svyatchenko S, Petrova O, Bondar A, Mikheev V, Ryzhikov A. Fatal Cases of Seasonal Influenza in Russia in 2015-2016. PLoS One 2016; 11:e0165332. [PMID: 27776172 PMCID: PMC5077104 DOI: 10.1371/journal.pone.0165332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022] Open
Abstract
The influenza epidemic in 2015–2016 in Russia is characterized by a sharp increase of influenza cases (beginning from the second week of 2016) with increased fatalities. Influenza was confirmed in 20 fatal cases registered among children (0–10 years), in 5 cases among pregnant women, and in 173 cases among elderly people (60 years and older). Two hundred and ninety nine people died from influenza were patients with some chronic problems. The overwhelming majority among the deceased (more than 98%) were not vaccinated against influenza. We isolated 109 influenza A(H1N1)pdm09 and one A(H3N2) virus strains from 501 autopsy material samples. The antigenic features of the strains were similar to the vaccine strains. A phylogenic analysis of hemagglutinin revealed that influenza A(H1N1)pdm09 virus strains belonged to 6B genetic group that had two main dominant subgroups during the 2015–2016 season. In Russia strains of the first group predominated. We registered an increased proportion of strains with D222G mutation in receptor-binding site. A herd immunity analysis carried out immediately prior to the epidemic showed that 34.4% blood sera samples collected in different regions of Russia were positive to A/California/07/09(H1N1)pdm09. We came to a conclusion that public awareness enhancement is necessary to reduce unreasonable refusals of vaccination.
Collapse
Affiliation(s)
- T. Ilyicheva
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - A. Durymanov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - I. Susloparov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Goncharova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - S. Svyatchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - O. Petrova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V. Mikheev
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Ryzhikov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| |
Collapse
|
9
|
Exhaled Breath Condensate: Technical and Diagnostic Aspects. ScientificWorldJournal 2015; 2015:435160. [PMID: 26106641 PMCID: PMC4461795 DOI: 10.1155/2015/435160] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.
Collapse
|