1
|
Traks T, Reemann P, Eskla KL, Ottas A, Jagomäe T, Liira R, Ilves L, Jaks V, Raam L, Abram K, Kingo K. High-throughput proteomic analysis of chronic inflammatory skin diseases: Psoriasis and atopic dermatitis. Exp Dermatol 2024; 33:e15079. [PMID: 38654506 DOI: 10.1111/exd.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.
Collapse
Affiliation(s)
- Tanel Traks
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Clinical Research Centre, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Paula Reemann
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aigar Ottas
- Clinical Research Centre, Tartu University Hospital, University of Tartu, Tartu, Estonia
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rasmus Liira
- Institute of Physics, University of Tartu, Tartu, Estonia
| | - Liis Ilves
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Viljar Jaks
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kristi Abram
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Staehlke S, Barth T, Muench M, Schroeter J, Wendlandt R, Oldorf P, Peters R, Nebe B, Schulz AP. The Impact of Ultrashort Pulse Laser Structuring of Metals on In-Vitro Cell Adhesion of Keratinocytes. J Funct Biomater 2024; 15:34. [PMID: 38391887 PMCID: PMC10889705 DOI: 10.3390/jfb15020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Besides the need for biomaterial surface modification to improve cellular attachment, laser-structuring is favorable for designing a new surface topography for external bone fixator pins or implants. The principle of this study was to observe how bioinspired (deer antler) laser-induced nano-microstructures influenced the adhesion and growth of skin cells. The goal was to create pins that allow the skin to attach to the biomaterial surface in a bacteria-proof manner. Therefore, typical fixator metals, steel, and titanium alloy were structured using ultrashort laser pulses, which resulted in periodical nano- and microstructures. Surface characteristics were investigated using a laser scanning microscope and static water contact angle measurements. In vitro studies with human HaCaT keratinocytes focused on cell adhesion, morphology, actin formation, and growth within 7 days. The study showed that surface functionalization influenced cell attachment, spreading, and proliferation. Micro-dimple clusters on polished bulk metals (DC20) will not hinder viability. Still, they will not promote the initial adhesion and spreading of HaCaTs. In contrast, additional nanostructuring with laser-induced periodic surface structures (LIPSS) promotes cell behavior. DC20 + LIPSS induced enhanced cell attachment with well-spread cell morphology. Thus, the bioinspired structures exhibited a benefit in initial cell adhesion. Laser surface functionalization opens up new possibilities for structuring, and is relevant to developing bioactive implants in regenerative medicine.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Tobias Barth
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
| | - Matthias Muench
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
| | - Joerg Schroeter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Robert Wendlandt
- Clinic for Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Paul Oldorf
- SLV Mecklenburg-Vorpommern GmbH, 18069 Rostock, Germany
| | - Rigo Peters
- SLV Mecklenburg-Vorpommern GmbH, 18069 Rostock, Germany
| | - Barbara Nebe
- Institute for Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Arndt-Peter Schulz
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, 23562 Lübeck, Germany
| |
Collapse
|
3
|
Golz AC, Bergemann C, Hildebrandt F, Emmert S, Nebe B, Rebl H. Selective adhesion inhibition and hyaluronan envelope reduction of dermal tumor cells by cold plasma-activated medium. Cell Adh Migr 2023; 17:1-19. [PMID: 37743639 PMCID: PMC10521339 DOI: 10.1080/19336918.2023.2260642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/06/2023] [Indexed: 09/26/2023] Open
Abstract
The sensitivity to cold plasma is specific to tumor cells while leaving normal tissue cells unaffected. This is the desired challenge in cancer therapy. Therefore, the focus of this work was a comparative study concerning the plasma sensitivity of dermal tumor cells (A-431) versus non-tumorigenic dermal cells (HaCaT) regarding their adhesion capacity. We found a selective inhibiting effect of plasma-activated medium on the adhesion of tumor cells while hardly affecting normal cells. We attributed this to a lower basal gene expression for the adhesion-relevant components CD44, hyaluronan synthase 2 (HAS2), HAS3, and the hyaluronidases in A431. Noteworthy, after plasma exposure, we revealed a significantly higher expression and synthesis of the hyaluronan envelope, the HAS3 gene, and the transmembrane adhesion receptors in non-tumorigenic HaCaTs.
Collapse
Affiliation(s)
- Anna-Christin Golz
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Claudia Bergemann
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Finja Hildebrandt
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Geiger B, Boujemaa-Paterski R, Winograd-Katz SE, Balan Venghateri J, Chung WL, Medalia O. The Actin Network Interfacing Diverse Integrin-Mediated Adhesions. Biomolecules 2023; 13:biom13020294. [PMID: 36830665 PMCID: PMC9953007 DOI: 10.3390/biom13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.
Collapse
Affiliation(s)
- Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence: (B.G.); (O.M.)
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sabina E. Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jubina Balan Venghateri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (B.G.); (O.M.)
| |
Collapse
|
5
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Nauth T, Bazgir F, Voß H, Brandenstein LI, Mosaddeghzadeh N, Rickassel V, Deden S, Gorzelanny C, Schlüter H, Ahmadian MR, Rosenberger G. Cutaneous manifestations in Costello syndrome: HRAS p.Gly12Ser affects RIN1-mediated integrin trafficking in immortalized epidermal keratinocytes. Hum Mol Genet 2023; 32:304-318. [PMID: 35981076 DOI: 10.1093/hmg/ddac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous germline missense variants in the HRAS gene underlie Costello syndrome (CS). The molecular basis for cutaneous manifestations in CS is largely unknown. We used an immortalized human cell line, HaCaT keratinocytes, stably expressing wild-type or CS-associated (p.Gly12Ser) HRAS and defined RIN1 as quantitatively most prominent, high-affinity effector of active HRAS in these cells. As an exchange factor for RAB5 GTPases, RIN1 is involved in endosomal sorting of cell-adhesion integrins. RIN1-dependent RAB5A activation was strongly increased by HRASGly12Ser, and HRAS-RIN1-ABL1/2 signaling was induced in HRASWT- and HRASGly12Ser-expressing cells. Along with that, HRASGly12Ser expression decreased total integrin levels and enriched β1 integrin in RAB5- and EEA1-positive early endosomes. The intracellular level of active β1 integrin was increased in HRASGly12Ser HaCaT keratinocytes due to impaired recycling, whereas RIN1 disruption raised β1 integrin cell surface distribution. HRASGly12Ser induced co-localization of β1 integrin with SNX17 and RAB7 in early/sorting and late endosomes, respectively. Thus, by retaining β1 integrin in intracellular endosomal compartments, HRAS-RIN1 signaling affects the subcellular availability of β1 integrin. This may interfere with integrin-dependent processes as we detected for HRASGly12Ser cells spreading on fibronectin. We conclude that dysregulation of receptor trafficking and integrin-dependent processes such as cell adhesion are relevant in the pathobiology of CS.
Collapse
Affiliation(s)
- Theresa Nauth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura I Brandenstein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Verena Rickassel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sophia Deden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Kashyap MP, Khan J, Sinha R, Jin L, Atigadda V, Deshane JS, Ahmed AR, Kilic A, Raman C, Mukhtar MS, Elmets CA, Athar M. Advances in molecular pathogenesis of hidradenitis suppurativa: Dysregulated keratins and ECM signaling. Semin Cell Dev Biol 2022; 128:120-129. [PMID: 35131152 PMCID: PMC9232849 DOI: 10.1016/j.semcdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is characterized by deep-seated, highly inflamed, and painful lumps/abscesses, fistulae, and sinus tracts that grow extensively deep in the dermis and are highly immunogenic in nature. In about one-third of the HS patients there is strong evidence for the role of γ-secretase mutations along with dysregulated Notch signaling. However, the contribution of dysregulated Notch signaling in HS pathogenesis in relation to hair follicle alterations and hyper-activation of the immune system remains undefined. A genome-wide association study (GWAS), proteomic data and functional investigations of identified sequence variants in HS pathology are not fully revealing. The disease initiation or progression may involve bacterial infection besides intrinsic functional defects in keratinocytes, which may be key to further exacerbate immune cell infiltration and cytokine production in and around the lesional tissue. The absence of a suitable animal model that could fully recapitulate the pathogenesis of HS is a major impediment for proper understanding the underlying mechanisms and development of effective treatments. The presence of extracellular matrix (ECM) degradation products along with dysregulation in keratinocytes and, dermal fibroblasts ultimately affect immune regulation and are various components of HS pathogenesis. Bacterial infection further exacerbates the complexity of the disease progression. While anti-TNFα therapy shows partial efficacy, treatment to cure HS is absent. Multiple clinical trials targeting various cytokines, complement C5a and ECM products are in progress. This review provides state-of-the-art information on these aspects with a focus on dysregulated keratinocyte and immune cells; and role of ECM, and Keratin functions in this regard.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Lin Jin
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Venkatram Atigadda
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Ayesha R Ahmed
- Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Ali Kilic
- Division of Plastic Surgery, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Chander Raman
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Craig A Elmets
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA.
| |
Collapse
|
8
|
Ainiwaer J, Zhang L, Niyazi M, Awut E, Zheng S, Sheyhidin I, Dai J. Alpha Protein Kinase 2 Promotes Esophageal Cancer via Integrin Alpha 11. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7676582. [PMID: 35813220 PMCID: PMC9259355 DOI: 10.1155/2022/7676582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022]
Abstract
Background As a common disease around the world, esophageal cancer (EC) primarily includes two subclasses: esophageal adenocarcinoma and esophageal squamous cell carcinoma. Mortality has been rising over the years; hence, exploring the mechanism of EC development has become critical. Among the alpha protein kinases, alpha protein kinase 2 (ALPK2) presumably has a connection with EC, but it has never been revealed before. Methods In this study, IHC analysis was used for ALPK2 expression quantification in ES tissues. TE-1 and Eca-109, which are both human EC cell lines, were used for in vitro analysis of cell proliferation, migration, apoptosis, and colony formation. Results ALPK2 was found to have an abundant expression within EC tissues (P < 0.001), as well as in the two selected human EC cell lines (P < 0.05). The data showed that ALPK2 depletion suppressed EC cell proliferation, migration, and colony formation, meanwhile stimulating apoptosis (P < 0.001). The in vivo experiments also displayed inhibitory effects caused by ALPK2 depletion on EC tumorigenesis (P < 0.001). It was further validated that ALPK2 depletion made the phosphorylation of Akt and mTOR, as well as CDK6 and PIK3CA levels downregulated (P < 0.001). Mechanistically, we identified integrin alpha 11 (ITGA11) as a downstream gene of ALPK2 regulating EC. More importantly, we found that ITGA11 elevation promoted cell proliferation and migration and rescued the suppression effects caused by ALPK2 depletion (P < 0.001). Conclusions ALPK2 promotes esophageal cancer via integrin its downstream gene alpha 11; ALPK2 can potentially act as a target for the treatment of EC.
Collapse
Affiliation(s)
- Julaiti Ainiwaer
- School of Public Health, Xinjiang Medical University, China
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Liwei Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Maidiniyeti Niyazi
- The Clinical Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, China
| | - Edris Awut
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - Shutao Zheng
- The Clinical Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, China
| | - Ilyar Sheyhidin
- Department of Thoracic Surgery, First Affiliated Hospital of Xinjiang Medical University, China
| | - JiangHong Dai
- School of Public Health, Xinjiang Medical University, China
| |
Collapse
|
9
|
Bioactive Low Molecular Weight Keratin Hydrolysates for Improving Skin Wound Healing. Polymers (Basel) 2022; 14:polym14061125. [PMID: 35335455 PMCID: PMC8955321 DOI: 10.3390/polym14061125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Keratin biomaterials with high molecular weights were intensively investigated but few are marketed due to complex methods of extraction and preparation and limited understanding of their influence on cells behavior. In this context the aim of this research was to elucidate decisive molecular factors for skin homeostasis restoration induced by two low molecular weight keratin hydrolysates extracted and conditioned through a simple and green method. Two keratin hydrolysates with molecular weights of 3758 and 12,400 Da were physico-chemically characterized and their structure was assessed by circular dichroism (CD) and FTIR spectroscopy in view of bioactive potential identification. Other investigations were focused on several molecular factors: α1, α2 and β1 integrin mediated signals, cell cycle progression in pro-inflammatory conditions (TNFα/LPS stimulated keratinocytes and fibroblasts) and ICAM-1/VCAM-1 inhibition in human vascular endothelial cells. Flow cytometry techniques demonstrated a distinctive pattern of efficacy: keratin hydrolysates over-expressed α1 and α2 subunits, responsible for tight bounds between fibroblasts and collagen or laminin 1; both actives stimulated the epidermal turn-over and inhibited VCAM over-expression in pro-inflammatory conditions associated with bacterial infections. Our results offer mechanistic insights in wound healing signaling factors modulated by the two low molecular weight keratin hydrolysates which still preserve bioactive secondary structure.
Collapse
|
10
|
Gamage R, Li DH, Schreiber CL, Smith BD. Comparison of cRGDfK Peptide Probes with Appended Shielded Heptamethine Cyanine Dye ( s775z) for Near Infrared Fluorescence Imaging of Cancer. ACS OMEGA 2021; 6:30130-30139. [PMID: 34778684 PMCID: PMC8582267 DOI: 10.1021/acsomega.1c04991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Previous work has shown that the sterically shielded near-infrared (NIR) fluorescent heptamethine cyanine dye, s775z, with a reactive carboxyl group produces fluorescent bioconjugates with an unsurpassed combination of high photostability and fluorescence brightness. This present contribution reports two new reactive homologues of s775z with either a maleimide group for reaction with a thiol or a strained alkyne group for reaction with an azide. Three cancer-targeting NIR fluorescent probes were synthesized, each with an appended cRGDfK peptide to provide selective affinity for integrin receptors that are overexpressed on the surface of many cancer cells including the A549 lung adenocarcinoma cells used in this study. A set of cancer cell microscopy and mouse tumor imaging experiments showed that all three probes were very effective at targeting cancer cells and tumors; however, the change in the linker structure produced a statistically significant difference in some aspects of the mouse biodistribution. The mouse studies included a mock surgical procedure that excised the subcutaneous tumors. A paired-agent fluorescence imaging experiment co-injected a binary mixture of targeted probe with 850 nm emission, an untargeted probe with 710 nm emission and determined the targeted probe's binding potential in the tumor tissue. A comparison of pixelated maps of binding potential for each excised tumor indicated a tumor-to-tumor variation of integrin expression levels, and a heterogeneous spatial distribution of integrin receptors within each tumor.
Collapse
Affiliation(s)
- Rananjaya
S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
11
|
Nader D, Curley GF, Kerrigan SW. A new perspective in sepsis treatment: could RGD-dependent integrins be novel targets? Drug Discov Today 2020; 25:2317-2325. [PMID: 33035665 PMCID: PMC7537604 DOI: 10.1016/j.drudis.2020.09.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently been regarded as a global health priority because of the lack of effective treatments available. Vascular endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells, triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-integrin therapy in the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Steven W Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
12
|
Song H, Li H, Ding X, Li M, Shen H, Li Y, Zhang X, Xing L. Long non‑coding RNA FEZF1‑AS1 facilitates non‑small cell lung cancer progression via the ITGA11/miR‑516b‑5p axis. Int J Oncol 2020; 57:1333-1347. [PMID: 33174014 PMCID: PMC7646599 DOI: 10.3892/ijo.2020.5142] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key players in the development and progression of cancer. FEZ family zinc finger 1 antisense RNA 1 (FEZF1-AS1) is a novel lncRNA that is involved in the development of cancer and acts as a potential biomarker for cancer. However, the clinical significance and molecular mechanism of FEZF1-AS1 in non-small cell lung cancer (NSCLC) remains uncertain. In the present study, FEZF1-AS1 was selected using Arraystar Human lncRNA microarray and was identified to be upregulated in NSCLC tissues and negatively associated with the overall survival of patients with NSCLC. Loss-of-function assays revealed that FEZF1-AS1 inhibition decreased cell proliferation and migration, and arrested cells at the G2/M cell cycle phase. Mechanistically, FEZF1-AS1 expression was influenced by N6-methyladenosine (m6A) modification. Since FEZF1-AS1 was mainly located in the cytoplasmic fraction of NSCLC cells, it was hypothesized that it may be involved in competing endogenous RNA regulatory network to impact the prognosis of NSCLC. Via integrating Arraystar Human mRNA microarray data and miRNA bioinformatics analysis, it was revealed that ITGA11 expression was decreased with loss of FEZF1-AS1 and increased with gain of FEZF1-AS1 expression, and microRNA (miR)-516b-5p inhibited the expression levels of both FEZF1-AS and ITGA11. RNA-binding protein immunoprecipitation and RNA pulldown assays further demonstrated that FEZF1-AS1 could bind to miR-516b-5p and that ITGA11 was a direct target of miR-516b-5p by luciferase reporter assay. Overall, the present findings demonstrated that FEZF1-AS1 was upregulated and acted as an oncogene in NSCLC by regulating the ITGA11/miR-516b-5p axis, suggesting that FEZF1-AS1 may be a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Heng Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hui Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiaosong Ding
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Minglei Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Haitao Shen
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yuehong Li
- Department of Pathology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xianghong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
13
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Sollena P, Cappilli S, Piccerillo A, Chiricozzi A, Peris K. COVID-19 hygiene measures: hand eczema and insights into ACE2 and integrins as key molecules for SARS-CoV-2 cutaneous transmission. Int J Dermatol 2020; 59:1409-1410. [PMID: 32970833 PMCID: PMC7537260 DOI: 10.1111/ijd.15208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Pietro Sollena
- Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Cappilli
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Piccerillo
- Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Chiricozzi
- Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ketty Peris
- Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Samarelli AV, Ziegler T, Meves A, Fässler R, Böttcher RT. Rabgap1 promotes recycling of active β1 integrins to support effective cell migration. J Cell Sci 2020; 133:jcs243683. [PMID: 32843574 PMCID: PMC7522031 DOI: 10.1242/jcs.243683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Integrin function depends on the continuous internalization of integrins and their subsequent endosomal recycling to the plasma membrane to drive adhesion dynamics, cell migration and invasion. Here we assign a pivotal role for Rabgap1 (GAPCenA) in the recycling of endocytosed active β1 integrins to the plasma membrane. The phosphotyrosine-binding (PTB) domain of Rabgap1 binds to the membrane-proximal NPxY motif in the cytoplasmic domain of β1 integrin subunits on endosomes. Silencing Rabgap1 in mouse fibroblasts leads to the intracellular accumulation of active β1 integrins, alters focal adhesion formation, and decreases cell migration and cancer cell invasion. Functionally, Rabgap1 facilitates active β1 integrin recycling to the plasma membrane through attenuation of Rab11 activity. Taken together, our results identify Rabgap1 as an important factor for conformation-specific integrin trafficking and define the role of Rabgap1 in β1-integrin-mediated cell migration in mouse fibroblasts and breast cancer cells.
Collapse
Affiliation(s)
- Anna V Samarelli
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Tilman Ziegler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Alexander Meves
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
- DZHK - German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
16
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183206. [PMID: 31991120 PMCID: PMC7063833 DOI: 10.1016/j.bbamem.2020.183206] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The integrin family of transmembrane adhesion receptors is essential for sensing and adhering to the extracellular environment. Integrins are heterodimers composed of non-covalently associated α and β subunits that engage extracellular matrix proteins and couple to intracellular signaling and cytoskeletal complexes. Humans have 24 different integrin heterodimers with differing ligand binding specificities and non-redundant functions. Complex structural rearrangements control the ability of integrins to engage ligands and to activate diverse downstream signaling networks, modulating cell adhesion and dynamics, processes which are crucial for metazoan life and development. Here we review the structural and signaling functions of integrins focusing on recent advances which have enhanced our understanding of how integrins are activated and regulated, and the cytoplasmic signaling networks downstream of integrins.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States of America..
| |
Collapse
|
18
|
Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
19
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|
20
|
Post-irradiation recovery time strongly influences fractional laser-facilitated skin absorption. Int J Pharm 2019; 564:48-58. [DOI: 10.1016/j.ijpharm.2019.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/16/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
|
21
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-Immune Cell Crosstalk in Skin Diseases. Front Cell Dev Biol 2019; 7:68. [PMID: 31134198 PMCID: PMC6514232 DOI: 10.3389/fcell.2019.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/09/2019] [Indexed: 01/06/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and proteoglycans secreted by keratinocytes, fibroblasts and immune cells. The function of the skin ECM has expanded from being a scaffold that provides structural integrity, to a more dynamic entity that is constantly remodeled to maintain tissue homeostasis. The ECM functions as ligands for cell surface receptors such as integrins, dystroglycans, and toll-like receptors (TLRs) and regulate cellular signaling and immune cell dynamics. The ECM also acts as a sink for growth factors and cytokines, providing critical cues during epithelial morphogenesis. Dysregulation in the organization and deposition of ECMs lead to a plethora of pathophysiological conditions that are exacerbated by aberrant ECM-immune cell interactions. In this review, we focus on the interplay between ECM and immune cells in the context of skin diseases and also discuss state of the art therapies that target the key molecular players involved.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Uttkarsh Ayyangar
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Ambika S. Kurbet
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Driti Ashok
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| | - Srikala Raghavan
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bangalore, India
| |
Collapse
|
22
|
Cohen J, Raviv S, Adir O, Padmanabhan K, Soffer A, Luxenburg C. The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt-Sox9 signaling. J Cell Biol 2019; 218:1390-1406. [PMID: 30867227 PMCID: PMC6446834 DOI: 10.1083/jcb.201807216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023] Open
Abstract
The Wave complex promotes Arp2/3-mediated actin polymerization. Cohen et al. show that Wave complex activity regulates epidermal shape and growth. Without Wave complex activity, F-actin content is down-regulated and ectopic activity of the Wnt/β-catenin–SOX9 pathway is triggered. This activity induces epidermal hyperproliferation and disrupts tissue architecture. Development of the skin epidermis requires tight spatiotemporal control over the activity of several signaling pathways; however, the mechanisms that orchestrate these events remain poorly understood. Here, we identify a key role for the Wave complex proteins ABI1 and Wave2 in regulating signals that control epidermal shape and growth. In utero RNAi-mediated silencing of Abi1 or Wasf2 induced cellular hyperproliferation and defects in architecture of the interfollicular epidermis (IFE) and delayed hair follicle growth. Unexpectedly, SOX9, a hair follicle growth regulator, was aberrantly expressed throughout the IFE of the mutant embryos, and its forced overexpression mimicked the Wave complex loss-of-function phenotype. Moreover, Wnt signaling, which regulates SOX9+ cell specification, was up-regulated in Wave complex loss-of-function IFE. Importantly, we show that the Wave complex regulates filamentous actin content and that a decrease in actin levels is sufficient to elevate Wnt/β-catenin signaling. Our results identify a novel role for Wave complex– and actin-regulated signaling via Wnt and SOX9 in skin development.
Collapse
Affiliation(s)
- Jonathan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Soffer
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Dong L, Qian J, Chen F, Fan Y, Long J. LINC00461 promotes cell migration and invasion in breast cancer through miR-30a-5p/integrin β3 axis. J Cell Biochem 2019; 120:4851-4862. [PMID: 30623482 DOI: 10.1002/jcb.27435] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Mounting evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated and implicated in the occurrence and development of a wide range of human malignancies. LINC00461, a novel cancer-related lncRNA, has been reported to be highly expressed and serve as oncogene in glioma; however, its biological role in breast cancer (BC) remains obscure. This study aimed to explore the role of LINC00461 in BC and elucidate the potential molecular mechanisms involved. In the current study, LINC00461 was found to be significantly upregulated in both BC tissues and cell lines. Besides, we found that high LINC00461 expression was associated with TNM stage and differentiation. Furthermore, functional studies demonstrated that LINC00461 expedited BC cell migration and invasion. Notably, LINC00461 was observed to enhance the expression of vimentin and zinc-finger E-box binding homeobox factor 1, suppress the expression of E-cadherin, and promote the activation of extracellular signal-regulated kinase and AKT signaling pathways. Mechanical investigations revealed that LINC00461 positively modulated integrin β3 (ITGB3) expression as miR-30a-5p sponge in BC cells. Taken together, LINC00461 exerts an oncogenic role in BC through miR-30a-5p/ITGB3 axis. Our data indicate that LINC00461 may be used to be a novel candidate therapeutic target and a valuable diagnostic biomarker for BC.
Collapse
Affiliation(s)
- Lifeng Dong
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fangfang Chen
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangfan Fan
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingpei Long
- Department of Breast, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Ito N, Seki S, Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar Drugs 2018; 16:md16120482. [PMID: 30513923 PMCID: PMC6315531 DOI: 10.3390/md16120482] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Aging-associated changes of skin conditions are a major concern for maintaining quality of life. Therefore, the improvement of skin conditions by dietary supplementation is a topic of public interest. In this study, we hypothesized that a composite supplement containing fish derived-collagen peptide and ornithine (CPO) could improve skin conditions by increasing plasma growth hormone and/or insulin-like growth factor-1 (IGF-1) levels. Twenty-two healthy Japanese participants were enrolled in an 8-week double-blind placebo-controlled pilot study. They were assigned to either a CPO group, who were supplemented with a drink containing CPO, or an identical placebo group. We examined skin conditions including elasticity and transepidermal water loss (TEWL), as well as plasma growth hormone and IGF-1 levels. Skin elasticity and TEWL were significantly improved in the CPO group compared with the placebo group. Furthermore, only the CPO group showed increased plasma IGF-1 levels after 8 weeks of supplementation compared with the baseline. Our results might suggest the novel possibility for the use of CPO to improve skin conditions by increasing plasma IGF-1 levels.
Collapse
Affiliation(s)
- Naoki Ito
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| | - Shinobu Seki
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| | - Fumitaka Ueda
- Pharmaceutical and Healthcare Research Laboratories, Research and Development Management Headquarters, FUJIFILM Corporation, 577, Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan.
| |
Collapse
|
25
|
Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Rep 2018; 16:3334-3347. [PMID: 27653694 DOI: 10.1016/j.celrep.2016.08.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
Collapse
|
26
|
Zhao K, Erb U, Hackert T, Zöller M, Yue S. Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:379-391. [DOI: 10.1016/j.bbamcr.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
27
|
Lee P, Yeo GC, Weiss AS. A cell adhesive peptide from tropoelastin promotes sequential cell attachment and spreading via distinct receptors. FEBS J 2017; 284:2216-2230. [DOI: 10.1111/febs.14114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/30/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Pearl Lee
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| | - Giselle C. Yeo
- School of Life and Environmental Sciences University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
- Applied and Plasma Physics School of Physics University of Sydney Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney Australia
- Bosch Institute University of Sydney Australia
- Charles Perkins Centre University of Sydney Australia
| |
Collapse
|
28
|
Joint features and complementarities of Tspan8 and CD151 revealed in knockdown and knockout models. Biochem Soc Trans 2017; 45:437-447. [PMID: 28408484 DOI: 10.1042/bst20160298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/04/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
Tetraspanins are highly conserved 4-transmembrane proteins which form molecular clusters with a large variety of transmembrane and cytosolic proteins. By these associations tetraspanins are engaged in a multitude of biological processes. Furthermore, tetraspanin complexes are located in specialized microdomains, called tetraspanin-enriched microdomains (TEMs). TEMs provide a signaling platform and are poised for invagination and vesicle formation. These vesicles can be released as exosomes (Exo) and are important in cell contact-independent intercellular communication. Here, we summarize emphasizing knockdown and knockout models' pathophysiological joint and selective activities of CD151 and Tspan8, and discuss the TEM-related engagement of CD151 and Tspan8 in Exo activities.
Collapse
|
29
|
Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, Gormley AC, Yuspa SH, Morasso MI. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ 2017; 24:717-730. [PMID: 28186503 PMCID: PMC5384032 DOI: 10.1038/cdd.2017.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/16/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
Collapse
Affiliation(s)
| | | | | | - Paul W Bible
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | | | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Anna C Gormley
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, MD 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Luo K, Long H, Xu B, Luo Y. Apelin attenuates postburn sepsis via a phosphatidylinositol 3-kinase/protein kinase B dependent mechanism: A randomized animal study. Int J Surg 2015; 21:22-7. [PMID: 26163884 DOI: 10.1016/j.ijsu.2015.06.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This study aims to investigate whether apelin would regulate inflammatory response and promote survival in an experimental burn sepsis model through a phosphatidylinositol 3-kinase/protein kinase B dependent pathway. METHODS Male BALB/c mice were divided into the following groups: sham, burn, burn sepsis, burn sepsis treated with apelin, burn sepsis treated with apelin plus LY294002, and burn sepsis treated with LY294002 alone. Apelin level and inflammatory cytokines in serum were detected by enzyme-linked immuno sorbent assay. Apelin/APJ (apelin receptor, gene symbol APLNR) mRNA expression in spleen and adhesion molecules levels in lung was detected by real-time polymerase chain reaction. Neutrophil infiltration in lung was determined by myeloperoxidase assay. Phosphorylation of protein kinase B in lung was determined by western blot. Mortality rate was monitored. RESULTS Burn sepsis induced decreased apelin/APJ mRNA expression in spleen and reduced apelin level in plasma, which were both restored by exogenous apelin treatment. Burn sepsis treated with apelin resulted in decreased interleukin-6, tumor-necrosis factor-alpha, interleukin -1β and monocyte chemotactic protein-1 levels in plasma. Mice with apelin treatment also showed decreased neutrophil infiltration and adhesion molecules expression, accompanied by a remarkable increased protein kinase B phosphorylation in lung tissue. The mortality rate in apelin treated animals was also significantly reduced. Importantly, the above effects of apelin were abolished by LY294002 treatment. CONCLUSION Apelin regulates inflammatory response, diminishes inflammatory remote organ damage and improves survival in an experimental model of burn sepsis, which is at least partly mediated by a phosphatidylinositol 3-kinase/protein kinase B dependent pathway.
Collapse
Affiliation(s)
- Keqin Luo
- Department of Emergency, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Huibao Long
- Department of Emergency, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bincan Xu
- Department of Emergency, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yanling Luo
- Department of Emergency, SunYat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
31
|
|
32
|
Zhang W, Lian K, Yang F, Yang Y, Zhu Z, Zhu Z, Cao W, Mao R, Jin Y, He J, Guo J, Liu X, Zheng H. Establishment and evaluation of a murine ανβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus. J Vet Sci 2015; 16:265-72. [PMID: 25643796 PMCID: PMC4588011 DOI: 10.4142/jvs.2015.16.3.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 11/20/2022] Open
Abstract
Integrin ανβ3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of ανβ3 integrin, a stable CHO-677 cell line expressing the murine ανβ3 heterodimer (designated as "CHO-677-mανβ3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits αν and β3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-mανβ3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-mανβ3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable ανβ3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of ανβ3 integrin, and as a cell model for FMDV research.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yu M, Strohmeyer N, Wang J, Müller DJ, Helenius J. Increasing throughput of AFM-based single cell adhesion measurements through multisubstrate surfaces. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:157-66. [PMID: 25671160 PMCID: PMC4311671 DOI: 10.3762/bjnano.6.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/10/2014] [Indexed: 05/23/2023]
Abstract
Mammalian cells regulate adhesion by expressing and regulating a diverse array of cell adhesion molecules on their cell surfaces. Since different cell types express distinct sets of cell adhesion molecules, substrate-specific adhesion is cell type- and condition-dependent. Single-cell force spectroscopy is used to quantify the contribution of cell adhesion molecules to adhesion of cells to specific substrates at both the cell and single molecule level. However, the low throughput of single-cell adhesion experiments greatly limits the number of substrates that can be examined. In order to overcome this limitation, segmented polydimethylsiloxane (PDMS) masks were developed, allowing the measurement of cell adhesion to multiple substrates. To verify the utility of the masks, the adhesion of four different cell lines, HeLa (Kyoto), prostate cancer (PC), mouse kidney fibroblast and MDCK, to three extracellular matrix proteins, fibronectin, collagen I and laminin 332, was examined. The adhesion of each cell line to different matrix proteins was found to be distinct; no two cell lines adhered equally to each of the proteins. The PDMS masks improved the throughput limitation of single-cell force spectroscopy and allowed for experiments that previously were not feasible. Since the masks are economical and versatile, they can aid in the improvement of various assays.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jinghe Wang
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|