1
|
Chen J, Jiang C, Fu L, Zhu CL, Xiang YQ, Jiang LX, Chen Q, Liu WM, Chen JN, Zhang LY, Liu M, Chen C, Tang H, Wang B, Tsao SW, Kwong DLW, Guan XY. CHL1 suppresses tumor growth and metastasis in nasopharyngeal carcinoma by repressing PI3K/AKT signaling pathway via interaction with Integrin β1 and Merlin. Int J Biol Sci 2019; 15:1802-1815. [PMID: 31523184 PMCID: PMC6743306 DOI: 10.7150/ijbs.34785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/19/2019] [Indexed: 01/24/2023] Open
Abstract
Deletion of Chromosome 3p is one of the most frequently detected genetic alterations in nasopharyngeal carcinoma (NPC). We reported the role of a novel 3p26.3 tumor suppressor gene (TSG) CHL1 in NPC. Down-regulation of CHL1 was detected in 4/6 of NPC cell lines and 71/95 (74.7%) in clinical tissues. Ectopic expressions of CHL1 in NPC cells significantly inhibit colony formation and cell motility in functional study. By up-regulating epithelial markers and down-regulating mesenchymal markers CHL1 could induce mesenchymal-epithelial transition (MET), a key step in preventing tumor invasion and metastasis. CHL1 could also cause the inactivation of RhoA/Rac1/Cdc42 signaling pathway and inhibit the formation of stress fiber, lamellipodia, and filopodia. CHL1 could co-localize with adhesion molecule Integrin-β1, the expression of CHL1 was positively correlated with Integrin-β1 and another known tumor suppressor gene (TSG) Merlin. Down-regulation of Integrin-β1 or Merlin was significantly correlated with the poor survival rate of NPC patients. Further mechanistic studies showed that CHL1 could directly interact with integrin-β1 and link to Merlin, leading to the inactivation of integrin β1-AKT pathway. In conclusion, CHL1 is a vital tumor suppressor in the carcinogenesis of NPC.
Collapse
Affiliation(s)
- Juan Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Chen Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Research Centre, Shenzhen University school of Medicine, Shenzhen, China
| | - Cai-Lei Zhu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal, Sun Yat-Sen Cancer Center, Guangzhou, China
| | - Ling-Xi Jiang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Departments of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai Man Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin-Na Chen
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li-Yi Zhang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Science and Technology of Huazhong University, Wuhan, China
| | - Hong Tang
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bo Wang
- Department of Clinical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University
| | - Sai Wah Tsao
- Departments of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China;,✉ Corresponding author: Xin-Yuan Guan, Department of Clinical Oncology, The University of Hong Kong, Room L10-56, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, Tel: 852-3917-9782, E-Mail: ; or Dora Lai-Wan Kwong, Department of Clinical Oncology, University of Hong Kong, 1/F, Professorial Block, Queen Mary Hospital, Hong Kong, Tel: 852-28554521, E-mail:
| |
Collapse
|
2
|
Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus 2013; 35:E18. [DOI: 10.3171/2013.10.focus13341] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Object
Currently, few medical options exist for refractory and atypical/anaplastic meningiomas. New developments in chemotherapeutic options for meningiomas have been explored over the past decade. The authors review these recent developments, with an emphasis on emerging avenues for therapy, clinical efficacy, and adverse effects.
Methods
A review of the literature was performed to identify any studies exploring recent medical and chemotherapeutic agents that have been or are currently being tested for meningiomas. Results from included preclinical and human clinical trials were reviewed and summarized.
Results
Current guidelines recommend only 3 drugs that can be used to treat patients with refractory and highgrade meningiomas: hydroxyurea, interferon-α 2B, and Sandostatin long-acting release. Recent developments in the medical treatment of meningiomas have been made across a variety of pharmacological classes, including cytotoxic agents, hormonal agents, immunomodulators, and targeted agents toward a variety of growth factors and their signaling cascades. Promising avenues of therapy that are being evaluated for efficacy and safety include antagonists of platelet-derived growth factor receptor, epidermal growth factor receptor, vascular endothelial growth factor receptor, and mammalian target of rapamycin. Because malignant transformation in meningiomas is likely to be mediated by numerous processes interacting via a complex matrix of signals, combination therapies affecting multiple molecular targets are currently being explored and hold significant promise as adjuvant therapy options.
Conclusions
Improved understanding of the molecular mechanisms driving meningioma tumorigenesis and malignant transformation has resulted in the targeted development of more specific agents for chemotherapeutic intervention in patients with nonresectable, aggressive, and malignant meningiomas.
Collapse
Affiliation(s)
| | | | - Gabriel Zada
- 3Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Abstract
Brain tumors are the leading cause of cancer death in children, with ependymoma being the third most common and posing a significant clinical burden. Its mechanism of pathogenesis, reliable prognostic indicators, and effective treatments other than surgical resection have all remained elusive. Until recently, ependymoma research was hindered by the small number of tumors available for study, low resolution of cytogenetic techniques, and lack of cell lines and animal models. Ependymoma heterogeneity, which manifests as variations in tumor location, patient age, histological grade, and clinical behavior, together with the observation of a balanced genomic profile in up to 50% of cases, presents additional challenges in understanding the development and progression of this disease. Despite these difficulties, we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms. Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin. This review summarizes our current knowledge in the molecular genetics of ependymoma and proposes future research directions necessary to further advance this field.
Collapse
Affiliation(s)
- Yuan Yao
- Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|