1
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
2
|
Dwina Y, Zaid LSM, Saraswati M, Rachmadi L, Kekalih A, Rahadiani N, Louisa M, Agustina H, Mochtar CA, Hamid ARAH. CD44 and CD133 protein expression might serve as a prognostic factor for early occurrence castration-resistant prostate cancer. Prostate 2024; 84:738-746. [PMID: 38528654 DOI: 10.1002/pros.24690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The occurrence of castration-resistant prostate cancer (CRPC) varies in patients with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT). The rate of occurrence of CRPC may be related to the presence of prostate cancer stem cells (CSC). Thus, this study aims to evaluate the presence of CSC markers (CD44 and CD133) in histopathology tissue at the time of diagnosis and their correlation with the occurrence of CRPC in patients with advanced PCa within 2 years of ADT. METHOD A retrospective case-control study was conducted to evaluate the incidence of CRPC within 2 years. The inclusion criteria were patients with PCa who had received treatment with ADT and a first-generation anti-androgen (AA) for 2 years. We classified patients based on whether they developed CRPC within 2 years (CRPC) of the therapy or did not experience CRPC within 2 years (non-CRPC) of the therapy. We performed immunohistochemical (IHC) staining for CD44 and CD133 on the prostate biopsy tissue samples. RESULTS Data were collected from records spanning 2011-2019. We analyzed a total of 65 samples, including 22 patients with CRPC and 43 patients with non-CRPC who had received treatment with LHRH agonists and AA for up to 2 years. Our findings showed a significant H-score difference in CD44 protein expression between CRPC prostate adenocarcinoma samples 869 (200-1329) and non-CRPC 524 (154-1166) (p = 0.033). There was no significant difference in CD133 protein expression between the two groups (p = 0.554). However, there was a significant difference in the nonoccurrence of CRPC between the high expressions of both CD44 and CD133 groups with other expressions of CD44/CD133 groups (25% vs. 75%; p = 0.011; odds ratio = 4.29; 95% confidence interval [1.34, 13.76]). CONCLUSION This study found a low expression of at least one CD44/CD133 protein in the patients without early occurrence of CRPC. This result might suggest that CD44/CD133 may function as a potential prognostic marker for PCa, especially in a low expression, to identify patients who have a better prognosis regarding the occurrence of early CRPC.
Collapse
Affiliation(s)
- Yayi Dwina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Litta Septina Mahmelia Zaid
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Meilania Saraswati
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Aria Kekalih
- Department of Community Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hasrayati Agustina
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Chaidir Arif Mochtar
- Department of Urology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | |
Collapse
|
3
|
Girgis M, Petruncio G, Russo P, Peyton S, Paige M, Campos D, Sanda M. Analysis of N- and O-linked site-specific glycosylation by ion mobility mass spectrometry: State of the art and future directions. Proteomics 2024; 24:e2300281. [PMID: 38171879 DOI: 10.1002/pmic.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Glycosylation, the major post-translational modification of proteins, significantly increases the diversity of proteoforms. Glycans are involved in a variety of pivotal structural and functional roles of proteins, and changes in glycosylation are profoundly connected to the progression of numerous diseases. Mass spectrometry (MS) has emerged as the gold standard for glycan and glycopeptide analysis because of its high sensitivity and the wealth of fragmentation information that can be obtained. Various separation techniques have been employed to resolve glycan and glycopeptide isomers at the front end of the MS. However, differentiating structures of isobaric and isomeric glycopeptides constitutes a challenge in MS-based characterization. Many reports described the use of various ion mobility-mass spectrometry (IM-MS) techniques for glycomic analyses. Nevertheless, very few studies have focused on N- and O-linked site-specific glycopeptidomic analysis. Unlike glycomics, glycoproteomics presents a multitude of inherent challenges in microheterogeneity, which are further exacerbated by the lack of dedicated bioinformatics tools. In this review, we cover recent advances made towards the growing field of site-specific glycosylation analysis using IM-MS with a specific emphasis on the MS techniques and capabilities in resolving isomeric peptidoglycan structures. Furthermore, we discuss commonly used software that supports IM-MS data analysis of glycopeptides.
Collapse
Affiliation(s)
- Michael Girgis
- Department of Bioengineering, College of Engineering & Computing, George Mason University, Fairfax, Virginia, USA
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Gregory Petruncio
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Steven Peyton
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
| | - Mikell Paige
- Center for Molecular Engineering, George Mason University, Manassas, Virginia, USA
- Department of Chemistry & Biochemistry, College of Science, George Mason University, Fairfax, Virginia, USA
| | - Diana Campos
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| | - Miloslav Sanda
- Max-Planck-Institut fuer Herz- und Lungenforschung, Bad Nauheim, Germany
| |
Collapse
|
4
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1722. [PMID: 37893440 PMCID: PMC10608342 DOI: 10.3390/medicina59101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy; (M.A.); (M.H.)
| | | |
Collapse
|
5
|
Rohrer KA, Song H, Akbar A, Chen Y, Pramanik S, Wilder PJ, McIntyre EM, Chaturvedi NK, Bhakat KK, Rizzino A, Coulter DW, Ray S. STAT3 Inhibition Attenuates MYC Expression by Modulating Co-Activator Recruitment and Suppresses Medulloblastoma Tumor Growth by Augmenting Cisplatin Efficacy In Vivo. Cancers (Basel) 2023; 15:cancers15082239. [PMID: 37190167 DOI: 10.3390/cancers15082239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene. Targeting STAT3 function either by inducible genetic knockdown (KD) or with a clinically relevant small molecule inhibitor reduced tumorigenic attributes in MB cells, including survival, proliferation, anti-apoptosis, migration, stemness and expression of MYC and its targets. STAT3 inhibition attenuates MYC expression by affecting recruitment of histone acetyltransferase p300, thereby reducing enrichment of H3K27 acetylation in the MYC promoter. Concomitantly, it also decreases the occupancy of the bromodomain containing protein-4 (BRD4) and phosphoSer2-RNA Pol II (pSer2-RNAPol II) on MYC, resulting in reduced transcription. Importantly, inhibition of STAT3 signaling significantly attenuated MB tumor growth in subcutaneous and intracranial orthotopic xenografts, increased the sensitivity of MB tumors to cisplatin, and improved the survival of mice bearing high-risk MYC-amplified tumors. Together, the results of our study demonstrate that targeting STAT3 may be a promising adjuvant therapy and chemo-sensitizer to augment treatment efficacy, reduce therapy-related toxicity and improve quality of life in high-risk pediatric patients.
Collapse
Affiliation(s)
- Kyle A Rohrer
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Anum Akbar
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Phillip J Wilder
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
| | - Erin M McIntyre
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Sutapa Ray
- Department of Pediatrics, Hematology and Oncology Division, Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Singh S, Bhardwaj M, Sen A, Nambiyar K, Ahuja A. Cancer Stem Cell Markers - CD133 and CD44 - in Paediatric Solid Tumours: A Study of Immunophenotypic Expression and Correlation with Clinicopathological Parameters. Indian J Surg Oncol 2023; 14:113-121. [PMID: 36891437 PMCID: PMC9986167 DOI: 10.1007/s13193-022-01626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Paediatric solid tumours account for about 30% of all the paediatric malignancies. They differ from adult tumours in various aspects like incidence, etiopathogenesis, biology, response rate and outcome. Immunohistochemical markers such as CD133, CD44, CD24, CD90, CD34, CD117, CD20 and ALDH 1 (aldehyde dehydrogenase-1) have been proposed to detect cancer stem cells in tumours. CD133 is a marker of tumour initiating cells in many human cancers and therefore, it may be possible to develop future therapies by targeting cancer stem cells via this marker. CD44 is a transmembrane glycoprotein also known as homing cell adhesion molecule. It is a multifunctional cell-adhesion molecule and plays an important role in cell-cell interaction, lymphocyte homing, tumour progression and metastasis. In the present study, we assessed the expression of CD133 and CD44 in paediatric solid tumours and correlated their expression with clinico-pathological parameters in paediatric solid tumours. This study was a cross-sectional observational study conducted in the department of pathology at a tertiary care centre. All the histologically diagnosed paediatric solid tumours for a period of one year and four months were retrieved from the archives. The cases were reviewed and included in the study after obtaining informed consent. Immunohistochemistry using the monoclonal antibodies for CD133 and CD44 was performed in the representative tissue sections of all the cases. Immuno-scores were assessed, and the results were compared using Pearson's chi-square test. The present study included 50 cases of paediatric solid tumours. The majority (34%) of the patients were in the age group of less than 5 years, with male preponderance (M:F = 2.3:1). The tumours included were Wilms tumour, yolk sac tumour, rhabdomyosarcoma, lymphoma, neuroblastoma, hepatoblastoma, gastrointestinal stromal tumour (GIST), medulloblastomas, pilocytic astrocytomas, ependymomas and glioblastoma. On immunohistochemical analysis, high expression of CD133 and CD44 was found. A significant association between the expression of CD133 and various tumour groups was observed (p = 0.004). However, CD44 showed variable expression in different tumour groups. Both CD133 and CD44 identified cancer stem cell in paediatric solid tumours. A further validation is warranted to investigate their potential role in therapy and prognosis.
Collapse
Affiliation(s)
- Shashikant Singh
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Minakshi Bhardwaj
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Amita Sen
- Department of Paediatric Surgery, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kaniyappan Nambiyar
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
7
|
Gomez RL, Ibragimova S, Ramachandran R, Philpott A, Ali FR. Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188805. [PMID: 36162542 DOI: 10.1016/j.bbcan.2022.188805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.
Collapse
Affiliation(s)
- Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
| |
Collapse
|
8
|
Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, Bryl R, Mozdziak P, Kempisty B, Piotrowska-Kempisty H. Ovarian Cancer and Cancer Stem Cells-Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers (Basel) 2021; 13:cancers13164178. [PMID: 34439332 PMCID: PMC8394875 DOI: 10.3390/cancers13164178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ovarian cancer is still a high-risk, metastatic disease, often diagnosed at a late stage. Difficulties in its treatment are associated with high resistance to chemotherapy and recurrence. Responsible for the malignant features of cancer are considered to be cancer stem cells (CSCs), which generate new cells by modifying various signaling pathways. Signaling pathways are crucial for the regulation of epithelial-mesenchymal transition, metastasis, and self-renewal of CSCs. New therapies based on the use of inhibitors that block CSC growth and proliferation signals are being investigated. The current histological classification of ovarian tumors, their epidemiology, and the recent knowledge of ovarian CSCs, with particular emphasis on their molecular basis, are important considerations. Abstract Despite the increasing development of medicine, ovarian cancer is still a high-risk, metastatic disease that is often diagnosed at a late stage. In addition, difficulties in its treatment are associated with high resistance to chemotherapy and frequent relapse. Cancer stem cells (CSCs), recently attracting significant scientific interest, are considered to be responsible for the malignant features of tumors. CSCs, as the driving force behind tumor development, generate new cells by modifying different signaling pathways. Moreover, investigations on different types of tumors have shown that signaling pathways are key to epithelial-mesenchymal transition (EMT) regulation, metastasis, and self-renewal of CSCs. Based on these established issues, new therapies are being investigated based on the use of inhibitors to block CSC growth and proliferation signals. Many reports indicate that CSC markers play a key role in cancer metastasis, with hopes placed in their targeting to block this process and eliminate relapses. Current histological classification of ovarian tumors, their epidemiology, and the most recent knowledge of ovarian CSCs, with particular emphasis on their molecular background, are important aspects for consideration. Furthermore, the importance of signaling pathways involved in tumor growth, development, and metastasis, is also presented.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paul Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| |
Collapse
|
9
|
Aali E, Madjd Z, Tekiyehmaroof N, Sharifi AM. Control of Hyperglycemia Using Differentiated and Undifferentiated Mesenchymal Stem Cells in Rats with Type 1 Diabetes. Cells Tissues Organs 2020; 209:13-25. [PMID: 32634811 DOI: 10.1159/000507790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Due to their ability in self-renewing and differentiation into a wide variety of tissues, mesenchymal stem cells (MSCs) exhibit outstanding potential for regenerative medicine. This study was aimed at investigating different aspects of MSC therapy in controlling hyperglycemia in streptozotocin-induced diabetes rats. Using an islet cell differentiation protocol, bone marrow (BM) MSCs were differentiated into insulin-producing cells (IPCs). The differentiation process was evaluated by immunocytochemistry, reverse transcriptase PCR, and dithizone staining. Diabetic animals in 4 diabetic individual groups received normal saline, BM-MSCs, coadministration of BM-MSCs with supernatant, and IPCs. Blood glucose and insulin levels were monitored during the experiment. Immunohistochemical analysis of the pancreas was performed at the end of the experiment. Administration of BM-MSCs could not reverse glucose and insulin levels in experimental animals as efficiently as cotransplantation of BM-MSCs with supernatant. The effect of coadministration of BM-MSCs with supernatant and transplantation of IPCs on controlling hyperglycemia is comparable. Immunohistochemical analysis showed that number and size of islets per section were significantly increased in groups receiving IPCs and BM-MSC-supernatant compared to the MSC group of animals. In conclusion, coadministration of BM-MSCs with supernatant could be used as efficiently as IPC transplantation in controlling hyperglycemia in diabetic rats.
Collapse
Affiliation(s)
- Ehsan Aali
- Department of Pharmacology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Madjd
- Department of Pathology, Oncology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Tekiyehmaroof
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
10
|
Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M, Nezhad SRK, Abbaszadegan MR. Ovarian cancer stem cells and targeted therapy. J Ovarian Res 2019; 12:120. [PMID: 31810474 PMCID: PMC6896744 DOI: 10.1186/s13048-019-0588-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest ratio of mortality among gynecologic malignancies. Chemotherapy is one of the most common treatment options for ovarian cancer. However, tumor relapse in patients with advanced tumor stage is still a therapeutic challenge for its clinical management. MAIN BODY Therefore, it is required to clarify the molecular biology and mechanisms which are involved in chemo resistance to improve the survival rate of ovarian cancer patients. Cancer stem cells (CSCs) are a sub population of tumor cells which are related to drug resistance and tumor relapse. CONCLUSION In the present review, we summarized the recent findings about the role of CSCs in tumor relapse and drug resistance among ovarian cancer patients. Moreover, we focused on the targeted and combinational therapeutic methods against the ovarian CSCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu‐Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hadi Yari
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology, Tehran, Iran
| | - Meysam Moghbeli
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
11
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Mansoori M, Roudi R, Abbasi A, Abolhasani M, Abdi Rad I, Shariftabrizi A, Madjd Z. High GD2 expression defines breast cancer cells with enhanced invasiveness. Exp Mol Pathol 2019; 109:25-35. [PMID: 31075227 DOI: 10.1016/j.yexmp.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/08/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Breast cancer is the most frequently diagnosed cancer among women. Cancer stem cells (CSCs) are suggested to be responsible for tumor initiation, progression, metastasis, recurrence and drug resistance. This study was conducted to evaluate the clinical significance of GD2, a newly suggested CSC marker and two other traditional CSC markers, CD44 and CD24 in breast cancer patients. MATERIAL AND METHODS A total of 168 primary breast cancer tissues were evaluated in terms of GD2, CD44 and CD24 expression using tissue microarray. Then, the correlation of expression levels of these markers with patients' clinicopathological characteristics was assessed. RESULTS Higher GD2 expression was mainly found in patients with advanced histological grade (p = 0.02), presence of lymph node invasion (p = 0.04), larger size of tumors (p = 0.04) and older age (p = 0.04). Breast cancer samples with advanced histological grade also showed higher CD44 (p = 0.03) and CD24 expression (p = 0.05). A significant positive association was found between increased CD24 expression and lymph node involvement (p = 0.01). Furthermore, GD2-high/CD44-high/CD24-low phenotype was frequently seen in breast cancer samples with positive lymph node involvement (p = 0.05). CONCLUSION In summary, increased expression of GD2 may define more aggressive tumor behavior in breast cancer. GD2 can well be considered as a diagnostic and prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Maryam Mansoori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Abbasi
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Isa Abdi Rad
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - A Shariftabrizi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Nuclear Oncology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Shafiei S, Kalantari E, Saeednejad Zanjani L, Abolhasani M, Asadi Lari MH, Madjd Z. Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas. Exp Mol Pathol 2019; 108:164-172. [PMID: 31028726 DOI: 10.1016/j.yexmp.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1) has been characterized as a novel potential cancer stem cell (CSC) marker in several types of cancer. It is considered as one of the most specific markers for distinguishing colorectal CSCs from normal stem cells. Yet, there are limited reports on the role of DCLK1 as a putative CSC marker in bladder cancer. Using immunohistochemistry, DCLK1 expression was examined in a well-defined tissue microarray series of 472 bladder cancer tissues. The association between DCLK1 protein expression and clinicopathological features, as well as survival outcomes, was assessed. Our findings showed strong, moderate, and weak DCLK1 expression in 123 (26.1%), 230 (48.7%), and 119 (25.2%) of the bladder cancer specimens, respectively. Higher expression of DCLK1 was significantly associated with increase in histological grade (P ≤ .001), pT stage (P = .014), lamina propria (P = .006), and lamina propria/muscularis (L/M) involvement (P = .014). On multivariate analysis, pT stage (P < .001), histological grade (P = .021), and lamina propria involvement (P = .001) were independent prognostic factors in DCLK1 expression. Moreover, the expression of DCLK1 was found to be an independent marker of poor prognosis for disease- specific survival (DSS) (P = .048) in bladder carcinomas. Our observations showed that DCLK1 expression was associated with more aggressive tumor behavior, more advanced disease, and poorer DSS in patients with bladder carcinomas. However, any potential clinical applications of DCLK1 as a novel target molecule in bladder cancer patients would require further investigations.
Collapse
Affiliation(s)
- Somayeh Shafiei
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Maryam Abolhasani
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Zahra Madjd
- Dep of Pathology, Iran University of Medical Sciences, (IUMS), Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada..
| |
Collapse
|
14
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
15
|
Ray S, Coulter DW, Gray SD, Sughroue JA, Roychoudhury S, McIntyre EM, Chaturvedi NK, Bhakat KK, Joshi SS, McGuire TR, Sharp JG. Suppression of STAT3 NH 2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21. Mol Carcinog 2018; 57:536-548. [PMID: 29280516 DOI: 10.1002/mc.22778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shawn D Gray
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason A Sughroue
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Erin M McIntyre
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R McGuire
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
16
|
Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan. Oncotarget 2017; 7:15215-29. [PMID: 26934655 PMCID: PMC4924781 DOI: 10.18632/oncotarget.7714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant activation/expression of pathways/molecules including NF-kB, mTOR, hedgehog and polo-like-kinase-1 (PLK1) are correlated with poor-prognosis neuroblastoma. Therefore, to identify a most efficacious treatment for neuroblastoma, we investigated the efficacy of NF-kB/mTOR dual-inhibitor 13-197, hedgehog inhibitor vismodegib and PLK1 inhibitor BI2536 alone or combined with topotecan against high-risk neuroblastoma. The in vitro efficacy of the inhibitors alone or combined with topotecan on cell growth/apoptosis and molecular mechanism(s) were investigated. Results showed that as single agents 13-197, BI2536 and vismodegib significantly decreased neuroblastoma cell growth and induced apoptosis by targeting associated pathways/molecules. In combination with topotecan, 13-197 did not show significant additive/synergistic effects against neuroblastoma. However, BI2536 or vismodegib further significantly decreased neuroblastoma cell growth/survival. These results clearly showed that vismodegib combination with topotecan was synergistic and more efficacious compared with BI2536 in combination. Together, in vitro data demonstrated that vismodegib was most efficacious in potentiating topotecan-induced antineuroblastoma effects. Therefore, we tested the combined efficacy of vismodegib and topotecan against neuroblastoma in vivo using NSG mice. This resulted in significantly (p<0.001) reduced tumor growth and increased survival of mice. Together, the combination of vismodegib and topotecan showed a significant enhanced antineuroblastoma efficacy by targeting associated pathways/molecules which warrants further preclinical evaluation for translation to the clinic.
Collapse
|
17
|
Kalantari E, Asadi Lari MH, Roudi R, Korourian A, Madjd Z. Lgr5High/DCLK1High phenotype is more common in early stage and intestinal subtypes of gastric carcinomas. Cancer Biomark 2017; 20:563-573. [DOI: 10.3233/cbm-170383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi Lari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Korourian
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Roudi R, Ebrahimi M, Shariftabrizi A, Madjd Z. Cancer stem cell research in Iran: potentials and challenges. Future Oncol 2017; 13:1809-1826. [PMID: 28776391 DOI: 10.2217/fon-2017-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treatment modalities can reduce cancer-related mortality; however, a majority of patients develop drug resistance, metastasis and relapse. It has been proposed that tumorigenic characteristics of tumors are related to a proportion of cancer cells, termed cancer stem cells (CSCs). Following the first evidence regarding the existence of CSC population in acute myeloid leukemia in 1997, publications in CSCs field showed an explosive trend in all cancer types around the world. First research paper in the field of CSCs in Iran was published in 2004 on prostate cancer. Subsequently, an annual number of publications in the field of CSCs displayed a rapidly growing trend. Therefore, in the current review, we have presented a comprehensive evaluation of the CSCs research in Iran.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells & Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine & Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kalantari E, Asgari M, Nikpanah S, Salarieh N, Asadi Lari MH, Madjd Z. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas. Pathol Oncol Res 2017; 23:793-802. [PMID: 28083789 DOI: 10.1007/s12253-016-0169-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran. .,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Hasheminejad Urology-Nephrology Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyedehmoozhan Nikpanah
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naghme Salarieh
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi Lari
- Department of Cellular, Anatomical and Physiological Sciences, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran. .,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Expression of CD133 cancer stem cell marker in melanoma: a systematic review and meta-analysis. Int J Biol Markers 2016; 31:e118-25. [PMID: 27102864 DOI: 10.5301/jbm.5000209] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND CD133-positive melanoma cells are thought to be melanoma-initiating cells with cancer stem cell (CSC) characteristics. Some researchers have reported that CD133-negative subsets can also initiate tumors, so the clinical significance of a CD133-positive subpopulation of cells in melanoma remains controversial. This systematic review was designed to assess the value of CD133 as a CSC marker in melanomas. A meta-analysis was also performed to cumulatively analyze the data on CD133 expression levels in the selected studies. MATERIALS AND METHOD Eligible studies were identified via an electronic search through various databases including PubMed, MEDLINE, Ovid MEDLINE, and Web of Science (from May 2005 through September 2014) using the following keywords: "CD133 or prominin-1", "cancer stem cells", and "melanoma". Only articles in which CD133 antigen was detected by immunohistochemistry (IHC) were included. A meta-analysis was performed to identify any association between CD133 expression and clinical outcomes. RESULTS Two hundred and ninety-nine melanoma cases from 5 studies were evaluated for expression levels of CD133 using IHC. Large heterogeneity was observed among the results (p<0.001, I2 = 94%). Approximately 47.9% (95% CI 23.7%-72.1%) of the studied melanoma cases had high CD133 expression. The I2 value and Q-test p value for heterogeneity were 89.0% and <0.001, respectively, and the pooled estimate of CD133 expression was 61.7% (95% CI 25.1%-98.4%). CONCLUSIONS Our findings suggest that CD133 is not yet proven to be an appropriate biomarker in identifying CSCs of melanoma. Thus, detection of CD133 in combination with other putative CSC markers may be more valuable for clinical application.
Collapse
|
21
|
Bi Y, Meng Y, Wu H, Cui Q, Luo Y, Xue X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. J Surg Oncol 2016; 113:144-51. [PMID: 26799258 DOI: 10.1002/jso.24124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES To investigate the expression profiles of cancer stem cells (CSCs) markers CD133 and CD44 in a cohort of medullary thyroid carcinoma (MTC) patients, and their prognostic values during 10-year follow-up. METHODS MTC samples were obtained for H&E and immunohistochemical analysis. Survival analysis was performed using Kaplan-Meier method and log-rank test. RESULTS Both the CD133 and CD44 positives were higher in MTC than control. High expression of CD133 and CD44 was positively correlated with capsule invasion and each other, and their co-expression was significantly correlated with capsule invasion, tissue invasion, and metastases at surgery. Tumor size, capsular invasion, tissue invasion, metastases at surgery, surgical plan, lymph node metastases, TNM stage, CD133, and CD44 were prognostic factors for overall survival (OS) and/or disease free survival (DFS). Both the CD133 and CD44 were unfavorable prognostic predictors for OS (P = 0.046, P = 0.03), while only CD44 was a significant predictor for DFS (P = 0.017). OS rate in CD133/CD44 co-expression group was significantly lower than that in non-co-expression group (χ(2) = 8.44, P = 0.004). CONCLUSION Our study suggested the high expression of CD133 and CD44 in the MTC, and CD133 and CD44 expressions were correlated with capsule invasion and with OS. CD133 and/or CD44 may be prognostic factors for OS and/or DFS in our MTC patients.
Collapse
Affiliation(s)
- Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quancai Cui
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Gheytanchi E, Mehrazma M, Madjd Z. Expression of Ki-67, p53 and VEGF in pediatric neuroblastoma. Asian Pac J Cancer Prev 2015; 15:3065-70. [PMID: 24815448 DOI: 10.7314/apjcp.2014.15.7.3065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB), is a neuroectodermal tumor derived from neural crest cells, and it is the second most common pediatric malignant tumor. The biological and clinical behavior of NB is very heterogeneous. This study was conducted to evaluate the expression of Ki-67, p53 and VEGF markers in tissues obtained from NB patients with different histologic types and stage. MATERIALS AND METHODS Tissue microarray (TMA) blocks were constructed from paraffin blocks of the NB tissues. Immunohistochemical staining was performed on TMA sections to detect the expression of Ki-67, p53 and VEGF markers. The association between the expression of these markers and clinicopathological parameters were then analyzed. RESULTS We had 18 patients with NB, one patient with ganglioneuroblastoma (GNB) and one with ganglioneuroma. Ki-67 was expressed in 13 (65%) tumors, and negatively correlated with age, prognosis, histologic type and stage of NB (all p<0.05). High and moderate expression of VEGF was found in 5% (1/20) and 65% (13/20) of the tumors, respectively; and it was positively correlated with age, prognosis and histologic types (all p<0.05) and negatively correlated with MKI (mitosis-karyorrhexis index). p53 expression was observed in 10% (2/20) of the tumors, which showed a relative correlation with MKI (p value=0.07). CONCLUSIONS VEGF as a candidate for anti-angiogenic targeted therapy was correlated with the development and progression of NB; therefore, VEGF along with Ki-67 can serve as a valuable marker for the prognosis of this tumor type.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | |
Collapse
|
23
|
Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z. ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev 2014; 15:2013-20. [PMID: 24716927 DOI: 10.7314/apjcp.2014.15.5.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is one of the promising markers for identifying cancer stem cells in many cancer types, along with other markers including CD44. The aim of the present study was to evaluate the expression and clinical significance of putative cancer stem cell markers, CD44 and ALDH1A1, in a series of urothelial carcinomas of urinary bladder (UCUB) by tissue microarray (TMA). MATERIALS AND METHODS A total of 159 Urothelial Carcinomas (UC) including 96 (60%) low grade and 63 (40%) high grade carcinomas were immunohistochemically examined for the expression of CD44 and ALDH1A1. Correlations of the relative expression of these markers with clinicopathological parameters were also assessed. RESULTS High level expression of ALDH1A1 was found in 16% (25/159) of bladder UC which was significantly correlated with increased tumor size (p value=0.002), high grade (p value<0.001), pathologic stage (T1, p value=0.007 and T2, p value<0.001) and increased rate of recurrence (p value=0.013). A high level of CD44 expression was found in 43% (68/159) of cases, being positively correlated with histologic grade (p value=0.032) and recurrence (p value=0.039). CONCLUSIONS Taken together, our results showed that ALDH1 was concurrently expressed in a fraction of CD44+ tumors and its expression correlated with poor prognosis in UCs. ALDH1A1 could be an ideal marker for targeted therapy of UCs in combination with conventional therapies, particularly in patients with high grade carcinomas. These findings indicate that cells expressing ALDH1A1 along with CD44 can be a potential therapeutic target in bladder carcinomas.
Collapse
Affiliation(s)
- Hossein Keymoosi
- Department Pathology, Iran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | | | |
Collapse
|
24
|
Madjd Z, Akbari ME, Zarnani AH, Khayamzadeh M, Kalantari E, Mojtabavi N. Expression of EMSY, a novel BRCA2-link protein, is associated with lymph node metastasis and increased tumor size in breast carcinomas. Asian Pac J Cancer Prev 2014; 15:1783-9. [PMID: 24641409 DOI: 10.7314/apjcp.2014.15.4.1783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EMSY gene encodes a BRCA2-binding partner protein that represses the DNA repair function of BRCA2 in non-hereditary breast cancer. Although amplification of EMSY gene has been proposed to have prognostic value in breast cancer, no data have been available concerning EMSY tissue expression patterns and its associations with clinicopathological features. MATERIALS AND METHODS In the current study, we examined the expression and localization pattern of EMSY protein by immunohistochemistry and assessed its prognostic value in a well-characterized series of 116 unselected breast carcinomas with a mean follow up of 47 months using tissue microarray technique. RESULTS Immunohistochemical expression of EMSY protein was detected in 76% of primary breast tumors, localized in nuclear (18%), cytoplasmic (35%) or both cytoplasmic and nuclear sites (23%). Univariate analysis revealed a significant positive association between EMSY expression and lymph node metastasis (p value=0.045) and larger tumor size (p value=0.027), as well as a non-significant relation with increased risk of recurrence (p value=0.088), whereas no association with patients' survival (log rank test, p value=0.482), tumor grade or type was observed. CONCLUSIONS Herein, we demonstrated for the first time the immunostaining pattern of EMSY protein in breast tumors. Our data imply that EMSY protein may have impact on clinicipathological parameters and could be considered as a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Zahra Madjd
- Oncopathology Research Center and Dep pathology, Faculty of medicine, Iran University of Medical Sciences, Tehran, Iran E-mail : ,
| | | | | | | | | | | |
Collapse
|
25
|
Sabet MN, Rakhshan A, Erfani E, Madjd Z. Co-Expression of Putative Cancer Stem Cell Markers, CD133 and Nestin, in Skin Tumors. Asian Pac J Cancer Prev 2014; 15:8161-9. [DOI: 10.7314/apjcp.2014.15.19.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Rakhshani N, Kalantari E, Bakhti H, Sohrabi MR, Mehrazma M. Evaluation of HER-2/neu Overexpression in Gastric Carcinoma using a Tissue Microarray. Asian Pac J Cancer Prev 2014; 15:7597-602. [DOI: 10.7314/apjcp.2014.15.18.7597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Aali E, Mirzamohammadi S, Ghaznavi H, Madjd Z, Larijani B, Rayegan S, Sharifi AM. A comparative study of mesenchymal stem cell transplantation with its paracrine effect on control of hyperglycemia in type 1 diabetic rats. J Diabetes Metab Disord 2014; 13:76. [PMID: 25688339 PMCID: PMC4329572 DOI: 10.1186/2251-6581-13-76] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022]
Abstract
Background Many studies suggested mesenchymal stem cells (MSCs) transplantation as a new approach to control hyperglycemia in type 1 diabetes mellitus through differentiation mechanism. In contrary others believed that therapeutic properties of MSCs is depends on paracrine mechanisms even if they were not engrafted. This study aimed to compare these two approaches in control of hyperglycemia in STZ-induced diabetic rats. Methods Animals were divided into five groups: normal; diabetic control; diabetic received MSCs; diabetic received supernatant of MSCs; diabetic received co-administration of MSCs with supernatant. Blood glucose, insulin levels and body weight of animals were monitored during experiment. Immunohistochemical and immunofluorescence analysis were performed to monitor functionality and migration of labeled-MSCs to pancreas. Results First administration of MSCs within the first 3 weeks could not reduce blood glucose, but second administration significantly reduced blood glucose after week four compared to diabetic controls. Daily injection of supernatant could not reduce blood glucose as efficient as MSCs. Interestingly; Co-administration of MSCs with supernatant significantly reduced blood glucose more than other treated groups. Insulin levels and body weight were significantly increased in MSCs + supernatant-treated animals compared to other groups. Immunohistological analysis showed an increase in number and size of islets per section respectively in supernatant, MSCs and MSCs + supernatant-treated groups. Conclusion Present study exhibited that repeated-injection of MSCs reduced blood glucose and increased serum insulin levels in recipient rats. Injection of supernatant could not reverse hyperglycemia as efficient as MSCs. Interestingly; co-administration of MSCs with supernatant could reverse hyperglycemia more than either group alone.
Collapse
Affiliation(s)
- Ehsan Aali
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center and Department of Pathology, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Rayegan
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali M Sharifi
- Razi Drug Research Center and Department of Pharmacology, Iran University of Medical Sciences, Tehran, Iran ; Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran ; Endocrine and Metabolism Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Monajemzadeh M, Soleimani V, Vasei M, Koochakzadeh L, Karbakhsh M. Expression and prognostic significance of Oct4 and Nanog in neuroblastoma. APMIS 2013; 122:734-41. [PMID: 24320714 DOI: 10.1111/apm.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of children, accounting for an estimated 15% cancer-related deaths in this period. It has been hypothesized that drug resistance of cancer stem cells may be responsible for chemotherapy failure, sustained tumor growth, and recurrence in many solid tumors. In this study, we investigated the expression of Octamer-binding transcription factor 4 (Oct4) and Nanog, two stem cell markers, in 47 neuroblastic tumors by immunohistochemistry and correlated their expression by other prognostic factors especially with NMYC amplification using both fluorescent and chromogenic in situ hybridization methods. Twenty three cases (48.9%) showed Oct4 signals and eight cases (17%) showed Nanog expression. All Nanog positive tumors showed Oct4 expression. Seven cases (14.1%) had NMYC amplification. There was also no association between positive Oct4 and Nanog reactivity and tumor morphology, age, mitosis-karyorrhexis index, NMYC amplification, favorable or unfavorable histology, and risk groups (p > 0.05). Cancer stem cells hypothesis is a challenging issue and controversies exist about their significance. Although our study did not show strong association between prognostic factors and expression of stem cell markers, performing of further large-scale studies of various neuroblastic tumors with various stages is suggested.
Collapse
Affiliation(s)
- Maryam Monajemzadeh
- Department of Pathology, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
29
|
Taeb J, Asgari M, Abolhasani M, Farajollahi MM, Madjd Z. Expression of prostate stem cell antigen (PSCA) in prostate cancer: a tissue microarray study of Iranian patients. Pathol Res Pract 2013; 210:18-23. [PMID: 24183365 DOI: 10.1016/j.prp.2013.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 09/01/2013] [Accepted: 09/16/2013] [Indexed: 12/19/2022]
Abstract
Proteins expressed in prostate cancer, including prostate stem cell antigen (PSCA), have been investigated as biomarkers for diagnosis and therapy of prostate cancer. Immunohistochemical analysis of PSCA expression was performed on tissue microarrays of 185 paraffin-embedded tissues of Iranian patients, including 114 prostate cancers (PCa), 21 High Grade Prostatic Intraepithelial Neoplasias (HGPIN) and 50 samples of benign prostate tissue. The level of PSCA expression was compared between benign tissues, HGPIN and PCa. Then the correlations of PSCA expression with clinicopathologic parameters were assessed in PCa. The PSCA expression was detected in the membrane and cytoplasm of epithelial secretory cells in normal prostate tissues, HGPIN and PCa with a variety of intensities. The intensity of PSCA staining was significantly increased in the PCa group as compared with HGPIN and benign prostate tissues (P-value<0.05). Moreover, the level of PSCA expression was increased with higher Gleason score of PCa (P-value=0.036). The data presented here revealed that expression of PSCA as a cell surface marker increased from benign prostate tissues (BPH) and HGPIN to PCa, and its expression in PCa was positively associated with poor cell differentiation, suggesting that PSCA could be considered as a valuable target for diagnosis and therapy of PCa.
Collapse
Affiliation(s)
- Jaleh Taeb
- Department of Molecular Medicine, School of Advanced Medical Technologies, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, School of Advanced Medical Technologies, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Cantile M, Collina F, Scognamiglio G, Di Bonito M, Franco R, Botti G. Inadequacy of tissue microarrays for the immunohistochemical detection of cancer stem cells in solid tumors: a viewpoint. Expert Rev Anticancer Ther 2013; 13:1139-41. [PMID: 24099570 DOI: 10.1586/14737140.2013.845341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori Fondazione "G. Pascale", via Mariano Semmola 80131, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Mohsenzadegan M, Madjd Z, Asgari M, Abolhasani M, Shekarabi M, Taeb J, Shariftabrizi A. Reduced expression of NGEP is associated with high-grade prostate cancers: a tissue microarray analysis. Cancer Immunol Immunother 2013; 62:1609-18. [PMID: 23955683 PMCID: PMC11029587 DOI: 10.1007/s00262-013-1463-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
Abstract
New gene expressed in prostate (NGEP) is a newly diagnosed prostate-specific gene that is expressed only in normal prostate and prostate cancer cells. Discovery of tissue-specific markers may promote the development of novel targets for immunotherapy of prostate cancer. In the present study, the staining pattern and clinical significance of NGEP were evaluated in a series of prostate tissues composed of 123 prostate cancer, 19 high-grade prostatic intraepithelial neoplasia and 44 samples of benign prostate tissue included in tissue microarrays using immunohistochemistry. Our study demonstrated that NGEP localized mainly in the apical and lateral membranes and was also partially distributed in the cytoplasm of epithelial cells of normal prostate tissue. All of the examined prostate tissues expressed NGEP with a variety of intensities; the level of expression was significantly more in the benign prostate tissues compared to malignant prostate samples (P value <0.001). Among prostate adenocarcinoma samples, a significant and inverse correlation was observed between the intensity of NGEP expression and increased Gleason score (P = 0.007). Taken together, we found that NGEP protein is widely expressed in low-grade to high-grade prostate adenocarcinomas as well as benign prostate tissues, and the intensity of expression is inversely proportional to the level of malignancy. NGEP could be an attractive target for immune-based therapy of prostate cancer patients as an alternative to the conventional therapies particularly in indolent patients.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Immunology Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asgari
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Jaleh Taeb
- Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Pathology, Oncopathology Research Centre, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, 14496-14530 Tehran, Iran
- Department of Pathology, Danbury Hospital, Yale University, Danbury, CT 06810 USA
| |
Collapse
|
32
|
Duan JJ, Qiu W, Xu SL, Wang B, Ye XZ, Ping YF, Zhang X, Bian XW, Yu SC. Strategies for isolating and enriching cancer stem cells: well begun is half done. Stem Cells Dev 2013; 22:2221-39. [PMID: 23540661 DOI: 10.1089/scd.2012.0613] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) constitute a subpopulation of cancer cells that have the potential for self-renewal, multipotent differentiation, and tumorigenicity. Studies on CSC biology and CSC-targeted therapies depend on CSC isolation and/or enrichment methodologies. Scientists have conducted extensive research in this field since John Dick's group successfully isolated CSCs based on the expression of the CD34 and CD38 surface markers. Progress in CSC research has been greatly facilitated by the enrichment and isolation of these cells. In this review, we summarize the current strategies used in our and other laboratories for CSC isolation and enrichment, including methods based on stem cell surface markers, intracellular enzyme activity, the concentration of reactive oxygen species, the mitochondrial membrane potential, promoter-driven fluorescent protein expression, autofluorescence, suspension/adherent culture, cell division, the identification of side population cells, resistance to cytotoxic compounds or hypoxia, invasiveness/adhesion, immunoselection, and physical property. Although many challenges remain to be overcome, it is reasonable to believe that more reliable, efficient, and convenient methods will be developed in the near future.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|