1
|
Gerdemann A, Cramer B, Degen GH, Veerkamp J, Günther G, Albrecht W, Behrens M, Esselen M, Ghallab A, Hengstler JG, Humpf HU. Comparative metabolism of aflatoxin B 1 in mouse, rat and human primary hepatocytes using HPLC-MS/MS. Arch Toxicol 2023; 97:3179-3196. [PMID: 37794256 PMCID: PMC10567917 DOI: 10.1007/s00204-023-03607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Gisela H. Degen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Jannik Veerkamp
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Georgia Günther
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523 Egypt
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, 44139 Dortmund, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149 Münster, Germany
| |
Collapse
|
2
|
Renaud JB, Walsh JP, Sumarah MW. Simplified Synthesis and Stability Assessment of Aflatoxin B 1-Lysine and Aflatoxin G 1-Lysine. Toxins (Basel) 2022; 14:toxins14010056. [PMID: 35051035 PMCID: PMC8780103 DOI: 10.3390/toxins14010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Aflatoxins B1 (AFB1) and G1 (AFG1) are carcinogenic mycotoxins that contaminate crops such as maize and groundnuts worldwide. The broadly accepted method to assess chronic human aflatoxin exposure is by quantifying the amount of aflatoxin adducted to human serum albumin. This has been reported using ELISA, HPLC, or LC-MS/MS to measure the amount of AFB1-lysine released after proteolysis of serum albumin. LC-MS/MS is the most accurate method but requires both isotopically labelled and unlabelled AFB1-lysine standards, which are not commercially available. In this work, we report a simplified synthetic route to produce unlabelled, deuterated and 13C6 15N2 labelled aflatoxin B1-lysine and for the first-time aflatoxin G1-lysine. Additionally, we report on the stability of these compounds during storage. This simplified synthetic approach will make the production of these important standards more feasible for laboratories performing aflatoxin exposure studies.
Collapse
Affiliation(s)
- Justin B. Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
- Correspondence: (J.B.R.); (M.W.S.)
| | - Jacob P. Walsh
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
- Department of Chemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mark W. Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
- Department of Chemistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Correspondence: (J.B.R.); (M.W.S.)
| |
Collapse
|
3
|
Tuanny Franco L, Mousavi Khaneghah A, In Lee SH, Fernandes Oliveira CA. Biomonitoring of mycotoxin exposure using urinary biomarker approaches: a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1619086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sarah Hwa In Lee
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Sass DC, Jager AV, Tonin FG, Rosim RE, Constantino MG, Oliveira CAF. Synthesis and purification of the aflatoxin B1-lysine adduct. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.994132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|