1
|
Cheng K, Li X, Tong M, Jong MC, Cai Z, Zheng H, Xiao B, Zhou J. Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems 2023; 8:e0050523. [PMID: 37882797 PMCID: PMC10734480 DOI: 10.1128/msystems.00505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Kaur H, Singh V, Kalia M, Mohan B, Taneja N. Identification and functional annotation of hypothetical proteins of uropathogenic Escherichia coli strain CFT073 towards designing antimicrobial drug targets. J Biomol Struct Dyn 2022; 40:14084-14095. [PMID: 34751095 DOI: 10.1080/07391102.2021.2000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary tract infections are a serious health concern worldwide, especially in developing countries. Escherichia coli strain CFT073 is a highly virulent pathogenic bacterial strain. CFT073 proteome contains 4897 proteins, out of which 992 have been classified as hypothetical proteins. Identification and characterization of hypothetical proteins can aid in the selection of targets for drug design. In this study, we studied the hypothetical proteins from the UPEC strain CFT073 using various computational tools. By NCBI-CDD, 376 protein sequences showed conserved domains. Based on the functional motifs in their primary sequences, we classified these 376 hypothetical proteins into 7 functional categories. Further KEGG database was used to find the roles of these hypothetical proteins in several pathways. Protein interaction network analysis of hypothetical proteins identified 53 proteins as highly interacting metabolic proteins. Virulence factor analysis of the proteins identified 8 proteins as virulent. We conducted a non-homology search for the identified proteins of UPEC in the available human proteome. We observed that 35 proteins are non-homologous to humans and hence could be selected for drug designing targets. Qualitative characterization of the selected 35 non-homologous hypothetical proteins including essentiality analysis and evaluation of druggability by similarity search against drug bank database was performed. Out of these 35 proteins, three-dimensional structures of six proteins (NP_752562.1, NP_756345.1, NP_754893.1, NP_756600.2, NP_755264.1 and NP_752994.1) could be successfully modelled. These new annotations can help to better understand disease mechanisms at the molecular level, as well as provide new targets for drug development against the UPEC strain CFT073.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikram Singh
- Center of Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, India
| | - Manmohit Kalia
- Department of Biology, State University of New York, Binghamton, NY, USA
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Lakshmi SA, Prasath KG, Tamilmuhilan K, Srivathsan A, Shafreen RMB, Kasthuri T, Pandian SK. Suppression of Thiol-Dependent Antioxidant System and Stress Response in Methicillin-Resistant Staphylococcus aureus by Docosanol: Explication Through Proteome Investigation. Mol Biotechnol 2022; 64:575-589. [PMID: 35018617 DOI: 10.1007/s12033-021-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
The present study was aimed to investigate the effect of docosanol on the protein expression profile of methicillin-resistant Staphylococcus aureus (MRSA). Thus, two-dimensional gel electrophoresis coupled with MALDI-TOF MS technique was utilized to identify the differentially regulated proteins in the presence of docosanol. A total of 947 protein spots were identified from the intracellular proteome of both control and docosanol treated samples among which 40 spots were differentially regulated with a fold change greater than 1.0. Prominently, the thiol-dependent antioxidant system and stress response proteins are downregulated in MRSA, which are critical for survival during oxidative stress. In particular, docosanol downregulated the expression of Tpx, AhpC, BshC, BrxA, and YceI with a fold change of 1.4 (p = 0.02), 1.4 (p = 0.01), 1.6 (p = 0.002), 4.9 (p = 0.02), and 1.4 (p = 0.02), respectively. In addition, docosanol reduced the expression of proteins involved in purine metabolic pathways, biofilm growth cycle, and virulence factor production. Altogether, these findings suggest that docosanol could efficiently target the antioxidant pathway by reducing the expression of bacillithiol and stress-associated proteins.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Tamil Nadu, 602117, India
| | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | - Raja Mohamed Beema Shafreen
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Alagappapuram, Karaikudi, Tamil Nadu, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, 630003, India
| | | |
Collapse
|
4
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
5
|
Singh RB, Das S, Chodosh J, Sharma N, Zegans ME, Kowalski RP, Jhanji V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res 2021; 88:101028. [PMID: 34813978 DOI: 10.1016/j.preteyeres.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis continues to be one of the leading causes of corneal blindness in the developed as well as the developing world, despite swift progress since the dawn of the "anti-biotic era". Although, we are expeditiously developing our understanding about the different causative organisms and associated pathology leading to keratitis, extensive gaps in knowledge continue to dampen the efforts for early and accurate diagnosis, and management in these patients, resulting in poor clinical outcomes. The ability of the causative bacteria to subdue the therapeutic challenge stems from their large genome encoding complex regulatory networks, variety of unique virulence factors, and rapid secretion of tissue damaging proteases and toxins. In this review article, we have provided an overview of the established classical diagnostic techniques and therapeutics for keratitis caused by various bacteria. We have extensively reported our recent in-roads through novel tools for accurate diagnosis of mono- and poly-bacterial corneal infections. Furthermore, we outlined the recent progress by our group and others in understanding the sub-cellular genomic changes that lead to antibiotic resistance in these organisms. Finally, we discussed in detail, the novel therapies and drug delivery systems in development for the efficacious management of bacterial keratitis.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Leiden University Medical Center, 2333, ZA Leiden, the Netherlands
| | - Sujata Das
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, Bhubaneshwar, India
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Michael E Zegans
- Department of Ophthalmology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; The Charles T Campbell Ophthalmic Microbiology Laboratory, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
|
7
|
Zadeh Hosseingholi E, Zarrini G, Pashazadeh M, Gheibi Hayat SM, Molavi G. In Silico Identification of Probable Drug and Vaccine Candidates Against Antibiotic-Resistant Acinetobacter baumannii. Microb Drug Resist 2019; 26:456-467. [PMID: 31742478 DOI: 10.1089/mdr.2019.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is known as a Gram-negative bacterium that has become one of the most important health problems due to antibiotic resistance. Today, numerous efforts are being made to find new antibiotics against this nosocomial pathogen. As an alternative solution, finding bacterial target(s), necessary for survival and spread of most resistant strains, can be a benefit exploited in drug and vaccine design. In this study, a list of extensive drug-resistant and carbapenem-resistant (multidrug resistant) A. bumannii strains with complete sequencing of genome were prepared and common hypothetical proteins (HPs) composed of more than 200 amino acids were selected. Then, a number of bioinformatics tools were combined for functional assignments of HPs using their sequence. Overall, among 18 in silico investigated proteins, the results showed that 7 proteins implicated in transcriptional regulation, pilus assembly, protein catabolism, fatty acid biosynthesis, adhesion, urea catalysis, and hydrolysis of phosphate monoesters have theoretical potential of involvement in successful survival and pathogenesis of A. baumannii. In addition, immunological analyses with prediction softwares indicated 4 HPs to be probable vaccine candidates. The outcome of this work will be helpful to find novel vaccine design candidates and therapeutic targets for A. baumannii through experimental investigations.
Collapse
Affiliation(s)
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Marayam Pashazadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Das S, Ray S, Ryan D, Sahu B, Suar M. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence 2018; 9:348-362. [PMID: 29130383 PMCID: PMC5955183 DOI: 10.1080/21505594.2017.1392428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| |
Collapse
|
9
|
Buerger P, Wood-Charlson EM, Weynberg KD, Willis BL, van Oppen MJH. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease. Front Microbiol 2016; 7:2077. [PMID: 28066391 PMCID: PMC5177637 DOI: 10.3389/fmicb.2016.02077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/08/2016] [Indexed: 12/01/2022] Open
Abstract
Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico. Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called "CRISPRs." Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1 and Geitlerinema sp. BBD_1991. We suggest that the presence of virulence genes in potential prophage regions, and the CRISPR-Cas defense systems are evidence of an arms race between the respective cyanobacteria and their bacteriophage predators. The presence of such a defense system likely reduces the number of successful bacteriophage infections and mortality in the cyanobacteria, facilitating the progress of BBD.
Collapse
Affiliation(s)
- Patrick Buerger
- Australian Institute of Marine Science (AIMS), TownsvilleQLD, Australia
- Australian Institute of Marine Science, James Cook University (AIMS@JCU), TownsvilleQLD, Australia
- College of Science and Engineering, James Cook University (JCU), TownsvilleQLD, Australia
| | - Elisha M. Wood-Charlson
- Center for Microbial Oceanography: Research and Education, University of Hawaii, HonoluluHI, USA
| | - Karen D. Weynberg
- Australian Institute of Marine Science (AIMS), TownsvilleQLD, Australia
| | - Bette L. Willis
- College of Science and Engineering, James Cook University (JCU), TownsvilleQLD, Australia
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, College of Science and Engineering, TownsvilleQLD, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science (AIMS), TownsvilleQLD, Australia
- School of BioSciences, University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
10
|
Schönauer E, Brandstetter H. Inhibition and Activity Regulation of Bacterial Collagenases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
McCarty SM, Percival SL. Proteases and Delayed Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:438-447. [PMID: 24688830 DOI: 10.1089/wound.2012.0370] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
SIGNIFICANCE Proteases and their inhibitors contribute to the balance between extracellular matrix (ECM) degradation and deposition, creating an equilibrium that is essential for the timely and coordinated healing of cutaneous wounds. However, when this balance is disrupted, wounds are led into a state of chronicity characterized by abundant levels of proteases and decreased levels of protease inhibitors. RECENT ADVANCES Researchers have sought to investigate the roles of proteases within both acute and chronic wounds and how the manipulation of protease activity may aid healing. Indeed, numerous wound dressings have been developed that target such proteases in an attempt to promote wound healing. CRITICAL ISSUES The normal tissue response to injury involves a complex interaction between cells and cellular mediators. In particular, the inflammatory response is augmented in chronic wounds which are characterized by elevated levels of proinflammatory cytokines and proteases. While controlling levels of inflammation and protease expression is a critical part of normal wound healing, elevated and prolonged expression of proteases produced during the inflammatory phase of healing can lead to excessive ECM degradation associated with impaired healing. FUTURE DIRECTIONS It seems plausible that future research should aim to investigate the ways in which proteases may be targeted as an alternative therapeutic approach to wound management and to assess the benefits and draw-backs of utilizing wound fluids to assess wound progression in terms of proteolytic activity.
Collapse
Affiliation(s)
- Sara M. McCarty
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
12
|
An extracellular serine protease produced by Vibrio vulnificus NCIMB 2137, a metalloprotease-gene negative strain isolated from a diseased eel. World J Microbiol Biotechnol 2011; 28:1633-9. [PMID: 22805945 DOI: 10.1007/s11274-011-0969-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/29/2011] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus is a ubiquitous estuarine microorganism but causes fatal systemic infections in immunocompromised humans, cultured eels or shrimps. An extracellular metalloprotease VVP/VvpE has been reported to be a potential virulence factor of the bacterium; however, a few strains isolated from a diseased eel or shrimp were recently found to produce a serine protease termed VvsA, but not VVP/VvpE. In the present study, we found that these strains had lost the 80 kb genomic region including the gene encoding VVP/VvpE. We also purified VvsA from the culture supernatant through ammonium sulfate fractionation, gel filtration and ion-exchange column chromatography, and the enzyme was demonstrated to be a chymotrypsin-like protease, as well as those from some vibrios. The gene vvsA was shown to constitute an operon with a downstream gene vvsB, and several Vibrio species were found to have orthologues of vvsAB. These findings indicate that the genes vvp/vvpE and vvsAB might be mobile genetic elements.
Collapse
|
13
|
Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: a potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob Agents Chemother 2011; 55:2670-8. [PMID: 21444693 DOI: 10.1128/aac.00776-10] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas elastase (LasB), a metalloprotease virulence factor, is known to play a pivotal role in pseudomonal infection. LasB is secreted at the site of infection, where it exerts a proteolytic action that spans from broad tissue destruction to subtle action on components of the host immune system. The former enhances invasiveness by liberating nutrients for continued growth, while the latter exerts an immunomodulatory effect, manipulating the normal immune response. In addition to the extracellular effects of secreted LasB, it also acts within the bacterial cell to trigger the intracellular pathway that initiates growth as a bacterial biofilm. The key role of LasB in pseudomonal virulence makes it a potential target for the development of an inhibitor as an antimicrobial agent. The concept of inhibition of virulence is a recently established antimicrobial strategy, and such agents have been termed "second-generation" antibiotics. This approach holds promise in that it seeks to attenuate virulence processes without bactericidal action and, hence, without selection pressure for the emergence of resistant strains. A potent inhibitor of LasB, N-mercaptoacetyl-Phe-Tyr-amide (K(i) = 41 nM) has been developed, and its ability to block these virulence processes has been assessed. It has been demonstrated that thes compound can completely block the action of LasB on protein targets that are instrumental in biofilm formation and immunomodulation. The novel LasB inhibitor has also been employed in bacterial-cell-based assays, to reduce the growth of pseudomonal biofilms, and to eradicate biofilm completely when used in combination with conventional antibiotics.
Collapse
|
14
|
Di Cagno R, De Angelis M, Calasso M, Gobbetti M. Proteomics of the bacterial cross-talk by quorum sensing. J Proteomics 2011; 74:19-34. [DOI: 10.1016/j.jprot.2010.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/14/2010] [Accepted: 09/29/2010] [Indexed: 01/03/2023]
|
15
|
Wang J, Sasaki T, Maehara Y, Nakao H, Tsuchiya T, Miyoshi SI. Variation of extracellular proteases produced by Vibrio vulnificus clinical isolates: Genetic diversity of the metalloprotease gene (vvp), and serine protease secretion by vvp-negative strains. Microb Pathog 2008; 44:494-500. [DOI: 10.1016/j.micpath.2008.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Revised: 12/30/2007] [Accepted: 01/03/2008] [Indexed: 01/22/2023]
|
16
|
Miyoshi SI, Nitanda Y, Fujii K, Kawahara K, Li T, Maehara Y, Ramamurthy T, Takeda Y, Shinoda S. Differential gene expression and extracellular secretion of the collagenolytic enzymes by the pathogen Vibrio parahaemolyticus. FEMS Microbiol Lett 2008; 283:176-81. [PMID: 18422626 DOI: 10.1111/j.1574-6968.2008.01159.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Vibrio parahaemolyticus, a causative agent of wound infections as well as food poisoning, harbors two collagenase genes: vppC and prtV. When cultivated at 26 degrees C in gelatin broth supplemented with 3.0% NaCl, significant collagenolytic activity was detected in the culture supernatant at the early stationary phase. Native polyacrylamide gel electrophoresis analysis revealed a 90-kDa protein, and N-terminal amino acid sequencing showed that this protein was VppC, generated through truncation of 72 N-terminal amino acid residues. Additionally, significant expression of only vppC was observed by reverse transcriptase PCR. By contrast, a vppC-negative mutant constructed through single crossover homologous recombination secreted a 50-kDa-collagenolytic enzyme; however, this enzyme was a serine protease that was reported previously. These results suggest that VppC is a primary extracellular collagenase produced by V. parahaemolyticus.
Collapse
Affiliation(s)
- Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tushima-Naka, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Valiente E, Lee CT, Hor LI, Fouz B, Amaro C. Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence. Environ Microbiol 2007; 10:328-38. [PMID: 18028416 DOI: 10.1111/j.1462-2920.2007.01454.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The virulence for eels of Vibrio vulnificus biotype 2 serovar E (VSE) is conferred by a plasmid that codifies ability to survive in eel serum and cause septicaemia. To find out whether the plasmid and the selected chromosomal gene vvp plays a role in the initial steps of infection, the VSE strain CECT4999, the cured strain CT218 and the Vvp-deficient mutant CT201 (obtained in this work by allelic exchange) were used in colonization and virulence experiments. The eel avirulent biotype 1 (BT1) strain YJ016, whose genome has been sequenced, was used for comparative purposes. The global results demonstrate that the plasmid does not play a significant role in surface colonization because (i) CECT4999 and CT218 were equally chemoattracted towards and adherent to eel mucus and gills, and (ii) CT218 persisted in gills from bath-infected eels 2 weeks post infection. In contrast, mutation in vvp gene reduced significantly chemoattraction and attachment to eel mucus and gills, as well as virulence degree by immersion challenge. Co-infection experiments by bath with CECT4999 and CT201 confirmed that Vvp was involved in eel colonization and persistence in gills, because CECT4999 was recovered at higher numbers compared with CT201 from both internal organs of moribund fish (ratio 4:1) and gills from survivors (ratio 50:1). Interestingly, YJ016 also showed chemoattraction and attachment to mucus, and complementation of CT201 with BT1-vvp gene restored both activities together with virulence degree by immersion challenge. Additional experiments with algae mucus and purified mucin gave similar results. In conclusion, the protease Vvp of V. vulnificus seems to play an essential role in colonization of mucosal surfaces present in aquatic environments. Among the V. vulnificus strains colonizing fish mucus, only those harbouring the plasmid could survive in blood and cause septicaemia.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Microbiology and Ecology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
18
|
Abstract
Vibrio vulnificus is ubiquitous in aquatic environments; however, it occasionally causes serious and often fatal infections in humans. These include invasive septicemia contracted through consumption of raw seafood, as well as wound infections acquired through contact with brackish or marine waters. In most cases of septicemia, the patients have underlying disease(s), such as liver dysfunction or alcoholic cirrhosis, and the secondary skin lesions including cellulitis, edema and hemorrhagic bulla appear on the limbs. Although V. Vul produces various virulent factors including polysaccharide capsule, type IV pili, hemolysin and proteolytic enzymes, the 45-kDa metalloprotease may be a causative factor of the skin lesions, because the purified protease enhances vascular permeability through generation of chemical mediators and also induces serious hemorrhagic damage through digestion of the vascular basement membrane. As well as other bacteria, V. Vul can regulate the protease production through the quorum-sensing system depending on bacterial cell density. However, this system operates efficiently at 25 degrees C, but not at 37 degrees C. Therefore, V. vulnificus may produce sufficient amounts of the protease only in the interstitial tissue of the limbs, in which temperature is lower than the internal temperature of the human body.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Okayama, Japan.
| |
Collapse
|
19
|
Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.2.221] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Miyoshi SI, Kawata K, Hosokawa M, Tomochika KI, Shinoda S. Histamine-releasing reaction induced by the N-terminal domain of Vibrio vulnificus metalloprotease. Life Sci 2003; 72:2235-42. [PMID: 12628443 DOI: 10.1016/s0024-3205(03)00094-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc metalloprotease secreted by Vibrio vulnificus, an opportunistic human pathogen causing septicemia and wound infection, stimulates exocytotic histamine release from rat mast cells. This protease consists of two functional domains: the N-terminal domain that catalyzes proteolytic reaction and the C-terminal domain that promotes the association with a protein substrate or cell membrane. Like the intact protease, the N-terminal domain alone also induced histamine release from rat peritoneal mast cells in a dose- and time-dependent manner. However, the reaction induced was apparently weak and went on more slowly. The nickel-substituted protease or its N-terminal domain, each of which has the reduced proteolytic activity due to decreased affinity to a substrate, showed much less histamine-releasing activity. When injected into the rat dorsal skin, the N-terminal domain also evoked enhancement of the hypodermic vascular permeability, while the activity was comparable to that of the protease. Taken together, the protease may stimulate histamine release through the action of the catalytic center of the N-terminal domain on the target substance(s) on the mast cell membrane. The C-terminal domain may support the in vitro action of the N-terminal domain by coordination of the association of the protease with the membrane, but it may not modulate the in vivo action.
Collapse
Affiliation(s)
- Shin-ichi Miyoshi
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Serine-, cysteine-, and metalloproteases are widely spread in many pathogenic bacteria, where they play critical functions related to colonization and evasion of host immune defenses, acquisition of nutrients for growth and proliferation, facilitation of dissemination, or tissue damage during infection. Since all the antibiotics used clinically at the moment share a common mechanism of action, acting as inhibitors of the bacterial cell wall biosynthesis or affecting protein synthesis on ribosomes, resistance to these pharmacological agents represents a serious medical problem, which might be resolved by using new generation of antibiotics, possessing a different mechanism of action. Bacterial protease inhibitors constitute an interesting such possibility, due to the fact that many specific as well as ubiquitous proteases have recently been characterized in some detail in both gram-positive as well as gram-negative pathogens. Few potent, specific inhibitors for such bacterial proteases have been reported at this moment except for some signal peptidase, clostripain, Clostridium histolyticum collagenase, botulinum neurotoxin, and tetanus neurotoxin inhibitors. No inhibitors of the critically important and ubiquitous AAA proteases, degP or sortase have been reported, although such compounds would presumably constitute a new class of highly effective antibiotics. This review presents the state of the art in the design of such enzyme inhibitors with potential therapeutic applications, as well as recent advances in the use of some of these proteases in therapy.
Collapse
Affiliation(s)
- Claudiu T Supuran
- University of Florence, Dipartimento di Chimica, Laboratorio di Chimica Inorganica e Bioinorganica, Firenze, Italy.
| | | | | |
Collapse
|
22
|
Clare BW, Scozzafava A, Supuran CT. Protease inhibitors: synthesis of a series of bacterial collagenase inhibitors of the sulfonyl amino acyl hydroxamate type. J Med Chem 2001; 44:2253-8. [PMID: 11405662 DOI: 10.1021/jm010087e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of sulfonyl amino acyl hydroxamates incorporating alkyl/arylsulfonyl-N-2-nitrobenzyl-L-alanine was prepared. Related compounds were obtained by reaction of N-2-nitrobenzyl-L-Ala with aryl isocyanates, arylsulfonyl isocyanates, or benzoyl isothiocyanate, followed by the conversion of the COOH into the CONHOH moiety. The new compounds were assayed as inhibitors of the Clostridium histolyticum collagenase (ChC), a bacterial protease involved in the degradation of extracellular matrix. Many of the obtained hydroxamates proved to be effective bacterial collagenase inhibitors, the main contributor to activity being the substitution pattern at the sulfonamido moiety. The best ChC inhibitors were those containing pentafluorophenylsulfonyl and 3- and 4-protected-aminophenylsulfonyl P(1)(') groups among others, with affinities in the low nanomolar range. This study also proves that the 2-nitrobenzyl- moiety, similarly to the 4-nitrobenyl one previously investigated (Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2000, 43, 1858-1865) is an efficient P(2)(') anchoring moiety for obtaining potent bacterial collagenase inhibitors.
Collapse
Affiliation(s)
- B W Clare
- Department of Chemistry, The University of Western Australia, 35 Stirling Highway, Crawley, W.A. 6009 Australia.
| | | | | |
Collapse
|
23
|
Miyoshi S, Kawata K, Tomochika K, Shinoda S. The hemagglutinating action of Vibrio vulnificus metalloprotease. Microbiol Immunol 1999; 43:79-82. [PMID: 10100751 DOI: 10.1111/j.1348-0421.1999.tb02376.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio vulnificus protease (VVP), a 45-kDa zinc metalloprotease, consists of two functional domains: an N-terminal 35-kDa polypeptide having endoproteinase activity, and a C-terminal 10-kDa polypeptide that mediates the binding of VVP to the erythrocyte membrane. Therefore, VVP, but not its N-terminal endoproteinase domain alone, has agglutinating activity to rabbit erythrocytes. When a single zinc atom in the catalytic center was substituted by treatment with CuCl2 or NiCl2, proteolytic and hemagglutinating activities were reduced by Ni substitution but not by Cu substitution. Cu-treated 35-kDa polypeptide showed sufficient affinity of the catalytic center and weak binding ability to the erythrocyte membrane, but the Ni-treated polypeptide did not. These results suggest that the binding of endoproteinase domain to membrane is also necessary for hemagglutination.
Collapse
Affiliation(s)
- S Miyoshi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
24
|
Miyoshi S, Nakazawa H, Kawata K, Tomochika K, Tobe K, Shinoda S. Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infect Immun 1998; 66:4851-5. [PMID: 9746589 PMCID: PMC108600 DOI: 10.1128/iai.66.10.4851-4855.1998] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing wound infections and septicemia, characterized by hemorrhagic and edematous damage to the skin. This human pathogen secretes a metalloprotease (V. vulnificus protease [VVP]) as an important virulence determinant. When several bacterial metalloproteases including VVP were injected intradermally into dorsal skin, VVP showed the greatest hemorrhagic activity. The level of the in vivo hemorrhagic activity of the bacterial metalloproteases was significantly correlated with that of the in vitro proteolytic activity for the reconstituted basement membrane gel. Of two major basement membrane components (laminin and type IV collagen), only type IV collagen was easily digested by VVP. Additionally, the immunoglobulin G antibody against type IV collagen, but not against laminin, showed sufficient protection against the hemorrhagic reaction caused by VVP. Capillary vessels are known to be stabilized by binding of the basal surface of vascular endothelial cells to the basement membrane. Therefore, specific degradation of type IV collagen may cause destruction of the basement membrane, breakdown of capillary vessels, and leakage of blood components including erythrocytes.
Collapse
Affiliation(s)
- S Miyoshi
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan.
| | | | | | | | | | | |
Collapse
|