1
|
Jeong CB, Kang HM, Hong SA, Byeon E, Lee JS, Lee YH, Choi IY, Bae S, Lee JS. Generation of albino via SLC45a2 gene targeting by CRISPR/Cas9 in the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2020; 154:111038. [PMID: 32174491 DOI: 10.1016/j.marpolbul.2020.111038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 05/22/2023]
Abstract
To produce albinism in the marine medaka Oryzias melastigma, we disrupted the solute carrier family 45 (SLC45a2) gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with a single guide RNA (sgRNA). Selected sgRNAs were able to target a SLC45a2 gene as confirmed by genotyping and heteroduplex mobility assay (HMA). Of the survived embryos after injection, 54.2% and 60.0% embryos exhibited albinism phenotype by sgRNA1 and sgRNA2, respectively. Deep sequencing at the on-target sites showed different insertion and deletion (indel) mutation profiles near the DNA cleavage sites, indicating high efficacy of producing SLC45a2 knock-out mutants by this method. Moreover, HMA at the potential off-target sites revealed that off-target activity would be induced at a low rate, or not induced at all. This albino marine medaka will be a good model for marine molecular ecotoxicology in establishment of diverse in vivo endpoints, and the application of this efficient gene targeting method in the marine medaka would be useful tool for mechanistic approaches.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Ah Hong
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, South Korea
| | - Sangsu Bae
- Department of Chemistry, College of Nature Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Cui L, Dong Y, Cao R, Gao J, Cen J, Zheng Z, Lu S. Mitochondrial genome of the garfish Hyporhamphus quoyi (Beloniformes: Hemiramphidae) and phylogenetic relationships within Beloniformes based on whole mitogenomes. PLoS One 2018; 13:e0205025. [PMID: 30439949 PMCID: PMC6237333 DOI: 10.1371/journal.pone.0205025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial DNA (mtDNA) can provide genome-level information (e.g. mitochondrial genome structure, phylogenetic relationships and codon usage) for analyzing molecular phylogeny and evolution of teleostean species. The species in the order Beloniformes have commercial importance in recreational fisheries. In order to further clarify the phylogenetic relationship of these important species, we determined the complete mitochondrial genome (mitogenome) of garfish Hyporhamphus quoyi of Hemiramphidae within Beloniformes. The mitogenome was 16,524 bp long and was typical of other teleosts mitogenomes in size and content. Thirteen PCGs started with the typical ATG codon (with exception of the cytochrome coxidase subunit 1 (cox1) gene with GTG). All tRNA sequences could be folded into expected cloverleaf secondary structures except for tRNASer (AGN) which lost a dihydrouracil (DHU) stem. The control region was 866 bp in length, which contained some conserved sequence blocks (CSBs) common to Beloniformes. The phylogenetic relationship between 26 fish Beloniformes species was analyzed based on the complete nucleotide and amino acid sequences of 13 PCGs by two different inference methods (Maximum Likelihood and Bayesian Inference). Phylogenetic analyses revealed Hemiramphidae as the sister group to Exocoetidae and it is a paraphyletic grouping. Our results may provide useful information on mitogenome evolution of teleostean species.
Collapse
Affiliation(s)
- Lei Cui
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Yuelei Dong
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Rongbo Cao
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Jian Gao
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Jingyi Cen
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Zhijia Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| | - Songhui Lu
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Kim BM, Kim J, Choi IY, Raisuddin S, Au DWT, Leung KMY, Wu RSS, Rhee JS, Lee JS. Omics of the marine medaka (Oryzias melastigma) and its relevance to marine environmental research. MARINE ENVIRONMENTAL RESEARCH 2016; 113:141-152. [PMID: 26716363 DOI: 10.1016/j.marenvres.2015.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
In recent years, the marine medaka (Oryzias melastigma), also known as the Indian medaka or brackish medaka, has been recognized as a model fish species for ecotoxicology and environmental research in the Asian region. O. melastigma has several promising features for research, which include a short generation period (3-4 months), daily spawning, small size (3-4 cm), transparent embryos, sexual dimorphism, and ease of mass culture in the laboratory. There have been extensive transcriptome and genome studies on the marine medaka in the past decade. Such omics data can be useful in understanding the signal transduction pathways of small teleosts in response to environmental stressors. An omics-integrated approach in the study of the marine medaka is important for strengthening its role as a small fish model for marine environmental studies. In this review, we present current omics information about the marine medaka and discuss its potential applications in the study of various molecular pathways that can be targets of marine environmental stressors, such as chemical pollutants. We believe that this review will encourage the use of this small fish as a model species in marine environmental research.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jaebum Kim
- Department of Animal Biotechnology, College of Animal Bioscience & Technology, Konkuk University, Seoul, 05029, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sheikh Raisuddin
- Department of Medical Elementology & Toxicology, Hamdard University, 110062, New Delhi, India
| | - Doris W T Au
- State Key Laboratory on Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Rudolf S S Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
4
|
Lai KP, Li JW, Wang SY, Chiu JMY, Tse A, Lau K, Lok S, Au DWT, Tse WKF, Wong CKC, Chan TF, Kong RYC, Wu RSS. Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes. BMC Genomics 2015; 16:135. [PMID: 25765076 PMCID: PMC4352242 DOI: 10.1186/s12864-015-1325-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022] Open
Abstract
Background The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. Results More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. Conclusions Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1325-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jing-Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Simon Yuan Wang
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jill Man-Ying Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Anna Tse
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Karen Lau
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Si Lok
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| | - Doris Wai-Ting Au
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - William Ka-Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Chris Kong-Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Ting-Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Richard Yuen-Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Rudolf Shiu-Sun Wu
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| |
Collapse
|
5
|
Development of a promising fish model (Oryzias melastigma) for assessing multiple responses to stresses in the marine environment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:563131. [PMID: 24724087 PMCID: PMC3958766 DOI: 10.1155/2014/563131] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/02/2022]
Abstract
With the increasing number of contaminants in the marine environment, various experimental organisms have been “taken into labs” by investigators to find the most suitable environmentally relevant models for toxicity testing. The marine medaka, Oryzias melastigma, has a number of advantages that make it a prime candidate for these tests. Recently, many studies have been conducted on marine medaka, especially in terms of their physiological, biochemical, and molecular responses after exposure to contaminants and other environmental stressors. This review provides a literature survey highlighting the steady increase of ecotoxicological research on marine medaka, summarizes the advantages of using O. melastigma as a tool for toxicological research, and promotes the utilization of this organism in future studies.
Collapse
|