1
|
Sun B, Li Q, Mei Y, Zhang Y, Zheng Y, Huang Y, Xiao X, Zhang J, Jian G, Cao X. Chromosome-scale and haplotype-resolved genome assembly of the autotetraploid Misgurnus anguillicaudatus. Sci Data 2024; 11:1059. [PMID: 39341798 PMCID: PMC11438953 DOI: 10.1038/s41597-024-03891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
In nature, diploids and tetraploids are two common types of polyploid evolution. Misgurnus anguillicaudatus (mud loach) is a remarkable fish species that exhibits both diploid and tetraploid forms. However, reconstructing the four haplotypes of its autotetraploid genome remains unresolved. Here, we generated the first haplotype-resolved, chromosome-level genome of autotetraploid M. anguillicaudatus with a size of 4.76 Gb, contig N50 of 6.78 Mb, and scaffold N50 of 44.11 Mb. We identified approximately 2.9 Gb (61.03% of genome) of repetitive sequences and predicted 91,485 protein-coding genes. Moreover, allelic gene expression levels indicated the absence of significant dominant haplotypes within the autotetraploid loach genome. This genome will provide a valuable biological model for unraveling the mechanisms of polyploid formation and evolution, adaptation to environmental changes, and benefit for aquaculture applications and biodiversity conservation.
Collapse
Affiliation(s)
- Bing Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingshan Li
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxuan Zheng
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinxin Xiao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gao Jian
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Yu P, Zhou L, Yang WT, Miao LJ, Li Z, Zhang XJ, Wang Y, Gui JF. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics 2021; 22:50. [PMID: 33446100 PMCID: PMC7809818 DOI: 10.1186/s12864-020-07360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Loaches of Cobitinae, widely distributed in Eurasian continent, have high economic, ornamental and scientific value. However, the phylogeny of Cobitinae fishes within genera or family level remains complex and controversial. Up to now, about 60 Cobitinae mitogenomes had been deposited in GenBank, but their integrated characteristics were not elaborated. RESULTS In this study, we sequenced and analyzed the complete mitogenomes of a female Cobits macrostigma. Then we conducted a comparative mitogenome analysis and revealed the conserved and unique characteristics of 58 Cobitinae mitogenomes, including C. macrostigma. Cobitinae mitogenomes display highly conserved tRNA secondary structure, overlaps and non-coding intergenic spacers. In addition, distinct base compositions were observed among different genus and significantly negative linear correlation between AT% and AT-skew were found among Cobitinae, genus Cobitis and Pangio mitogenomes, respectively. A specific 3 bp insertion (GCA) in the atp8-atp6 overlap was identified as a unique feature of loaches, compared to other Cypriniformes fish. Additionally, all protein coding genes underwent a strong purifying selection. Phylogenetic analysis strongly supported the paraphyly of Cobitis and polyphyly of Misgurnus. The strict molecular clock predicted that Cobitinae might have split into northern and southern lineages in the late Eocene (42.11 Ma), furthermore, mtDNA introgression might occur (14.40 Ma) between ancestral species of Cobitis and ancestral species of Misgurnus. CONCLUSIONS The current study represents the first comparative mitogenomic and phylogenetic analyses within Cobitinae and provides new insights into the mitogenome features and evolution of fishes belonging to the cobitinae family.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Tao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Shibata K, Yen DT, Fujimoto T, Arai K. Comparative analysis of mitochondrial genomes in genetically distinct groups of the dojo loach Misgurnus anguillicaudatus. MITOCHONDRIAL DNA PART B 2020. [PMID: 33367109 PMCID: PMC7759274 DOI: 10.1080/23802359.2020.1840937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dojo loach (Misgurnus anguillicaudatus) that inhabit Japan are composed of two genetically divergent groups (A and B). Although most individual loach reproduce bisexually, clone lineages exist in certain populations that reproduce gynogenetically. To investigate the molecular phylogenetic relationships among the M. anguillicaudatus groups and clone lineages, complete mitogenomes of members from groups A and B and a clone lineage were sequenced using long range PCR and primer walking methods. The three groups of mitogenomes shared the same gene order and had similar base compositions and codon usage patterns. Phylogenetic analysis indicated group A and the clone lineage were genetically close with group B being genetically divergent.
Collapse
Affiliation(s)
- Kiko Shibata
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | | | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Shibata K, Yen DT, Fujimoto T, Arai K. Complete mitochondrial genomes of five subspecies of the Eurasian magpie Pica pica, obtained with Oxford Nanopore MinION, and their interpretation regarding intraspecific taxonomy. Mitochondrial DNA B Resour 2020; 5:3810-3811. [PMID: 33367109 PMCID: PMC7759274 DOI: 10.1080/23802359.2020.1838354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/26/2022] Open
Abstract
The complete mitochondrial (mt) genomes of five subspecies of the Eurasian (Common) magpie Pica pica were determined for the first time. Lengths of the circular genomes comprise 13 protein-coding genes, two rRNA genes (for 12S rRNA and 16S rRNA), 22 tRNA genes, and the non-coding control region (CR). Gene content and lengths of the genomes (16,936-16,945 bp) are similar to typical vertebrate mt genomes. The subspecies studied differs by several single substitutions and indels, especially in the CR. The phylogenetic tree based on complete mt genomes shows a deep divergence of the two groups of subspecies which supports the proposed division into two distinct species: P. pica and P. serica.
Collapse
Affiliation(s)
- Kiko Shibata
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | | | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|