1
|
Singh D, Mosahari PV, Sharma P, Neog K, Bora U. Comparative genomic and phylogenetic analysis of the complete mitochondrial genome of Cricula trifenestrata (Helfer) among lepidopteran insects. Genome 2024; 67:424-439. [PMID: 39047299 DOI: 10.1139/gen-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cricula trifenestrata Helfer (commonly known as Amphutukoni muga/Cricula silkworm), a wild sericigenous insect produces golden yellow silk similar to Antheraea assamensis (muga silkworm), with significant potential as a natural fiber and biomaterial. Cricula is considered as a pest as it competes for food with muga, which produces the prized golden silk. This study focuses on decoding the mitochondrial genome of C. trifenestrata using next-generation sequencing technology and includes comparative analysis with Bombycoids and other lepidopteran insects. We found that the Cricula mitogenome spans 15 425 bp and exhibits typical gene content and arrangement consistent with other Saturniids and lepidopterans. All protein-coding genes were found to undergo purifying selection, with the highest and lowest conservation observed in the cox1 and atp8 gene, respectively, indicating their potential role in future evolutionary events. We identified two types of mismatches: 23 "G-U" and 6 "U-U" pairs, similar to those found in Actias selene among the Saturniids. Additionally, our study uncovered the presence of two 33 bp repeat units and a "TTAGA" motif in the control region, in contrast to the typical "ATAGA" motif, suggesting functional similarity with evolving sequences. Furthermore, phylogenetic analysis supports the close relationship of Cricula with other species within the Saturniidae family.
Collapse
Affiliation(s)
- Deepika Singh
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Ponnala Vimal Mosahari
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Pragya Sharma
- Department of Bioengineering and Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Guwahati 781014, Assam, India
| | - Kartik Neog
- Biotechnology Section, Central Muga Eri Research & Training Institute (CMER&TI), Lahdoigarh 785700, Jorhat, Assam, India
| | - Utpal Bora
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India
- Centre for the Environment, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Elameen A, Maduna SN, Mageroy MH, van Eerde A, Knudsen G, Hagen SB, Eiken HG. Novel insight into lepidopteran phylogenetics from the mitochondrial genome of the apple fruit moth of the family Argyresthiidae. BMC Genomics 2024; 25:21. [PMID: 38166583 PMCID: PMC10759517 DOI: 10.1186/s12864-023-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. RESULTS The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. CONCLUSIONS Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species.
Collapse
Affiliation(s)
- Abdelhameed Elameen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway.
| | - Simo N Maduna
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Melissa H Mageroy
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - André van Eerde
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Geir Knudsen
- Division of Biotechnology and Plant Health, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Snorre B Hagen
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, NIBIO, Norwegian Institute of Bioeconomy Research, Høghskoleveien 7, N-1431, Aas, Norway
| |
Collapse
|
3
|
Pan Z, Huang S, Zheng W. The complete mitogenome of Anaplectoides virens (Butler, 1878) (Lepidoptera: Noctuidae) and phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:960-962. [PMID: 37705758 PMCID: PMC10496521 DOI: 10.1080/23802359.2023.2254460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Anaplectoides virens (Noctuoidea: Noctuidae) is a polyphagous herbivorous moth, which feeds on a wide variety of crops. Molecular phylogenetic studies of this species are still limited. We presented the first complete mitochondrial genome of the genus Anaplectoides, which was assembled from data generated using a genome skimming method. The assembled mitogenome is 15,358 bp in length and consists of 37 genes, including 13 protein-coding genes, two rRNAs, 22 tRNAs, and a control region. Except for the start codon of cox1 with CGA, other coding genes use ATN as the start codon. Most PCGs use TAA as the stop codon; however, cox1, cox2, and nad4 use T as the termination codon. Phylogenetic analysis revealed that the genera of ((Agrotis + Striacosta) + Anaplectoides) within Noctuinae formed a monophyletic group. Among Noctuidae, the relationship of ((Noctuinae + Hadninae) + Amphipyrinae) was also highly supported.
Collapse
Affiliation(s)
- Zhaohui Pan
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education (Institute of Plateau Ecology, Tibet Agricultural & Animal Husbandry University), Linzhi, China
| | - Sicheng Huang
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education (Institute of Plateau Ecology, Tibet Agricultural & Animal Husbandry University), Linzhi, China
| | - Weilie Zheng
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education (Institute of Plateau Ecology, Tibet Agricultural & Animal Husbandry University), Linzhi, China
| |
Collapse
|
4
|
Shah RA, Riyaz M, Ignacimuthu S, Sivasankaran K. Characterization of four mitochondrial genomes from superfamilies Noctuoidea and Hyblaeoidea with their phylogenetic implications. Sci Rep 2022; 12:18926. [PMID: 36344589 PMCID: PMC9640664 DOI: 10.1038/s41598-022-21502-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the present study, the newly sequenced mitogenomes of three Noctuoid and one Hyblaeoid (Insecta: Lepidoptera) species were annotated based on next-generation sequence data. The complete mitogenome lengths of Oraesia emarginata, Actinotia polyodon, Odontodes seranensis, and Hyblaea puera were 16,668 bp, 15,347 bp, 15,419 bp, and 15,350 bp, respectively. These mitogenomes were found to encode 37 typical mitochondrial genes (13 protein-coding, 22 transfer RNA, 2 ribosomal RNA) and a control region, similar to most Lepidoptera species. Maximum likelihood (ML) methods and Bayesian inference (BI) were used to reconstruct the phylogenetic relationships of the moths. This study showed the relationships of Noctuoid families as follows: (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))). Furthermore, the species H. puera was separately clustered from the Noctuoidea member groups. Till now, the species from the superfamily Hyblaeoidea have not been discussed for their phylogenetic relationships. In this study, the complete mitochondrial genome of one species from the superfamily Hyblaeoidea was analysed.
Collapse
Affiliation(s)
- Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | - Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India
| | | | - Kuppusamy Sivasankaran
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola Collège, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
5
|
Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Saturnia japonica. Biochem Genet 2021; 60:914-936. [PMID: 34553327 DOI: 10.1007/s10528-021-10129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
The complete mitochondrial genome (mitogenome) of Saturnia japonica (Lepidoptera: Saturniidae) was sequenced and annotated. It is a circular molecule of 15, 376 bp, composed of 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNA), and an adenine (A) + thymine (T)-rich region. All protein-coding genes (PCGs) are initiated by the ATN codon except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon. Except for cox2 and nad4, which were terminated by incomplete stop codon T or TA, the rest were terminated by canonical stop codon TAA. The A + T-rich region is high conservative, including 'ATAGA' motif followed by a 19 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element, with a total length of 332 bp. The Asn codon was the most frequently used codon, followed by Ile, Leu2, Lys, Met, Phe, and Tyr, while Cys was the least frequently used codon. Phylogenetic relationships analysis based on the 13 PCGs by using maximum likelihood (ML) and neighbor Joining (NJ) revealed that S. japonica belongs to the Saturniidae family. In this study, the annotation and characteristics of the mitogenome of S. japonica were resolved for the first time, which laid a foundation for species classification and the molecular evolution of Lepidoptera: Saturniidae.
Collapse
|
6
|
Riyaz M, Shah RA, Savarimuthu I, Kuppusamy S. Comparative mitochondrial genome analysis of Eudocima salaminia (Cramer, 1777) (Lepidoptera: Noctuoidea), novel gene rearrangement and phylogenetic relationship within the superfamily Noctuoidea. Mol Biol Rep 2021; 48:4449-4463. [PMID: 34109499 DOI: 10.1007/s11033-021-06465-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The species Eudocima salaminia (Cramer, 1777) commonly known as the fruit-piercing moth belongs to family Erebidae. Its distribution varies from India and across South-east Asia, pacific islands and parts of Australia. The insect is a devastating pest of citrus, longans and lychees. In the present study, complete mitochondrial genome of Eudocima salaminia was sequenced and analyzed using Illumina sequencer. The phylogenetic tree was reconstructed based on nucleotide sequences of 13 PCGs using Maximum likelihood method-General Reversible mitochondrial (mtREV) model. The mitogenome has 15,597 base pairs (bp) in length, comprising of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and A + T-rich region. All protein-coding genes (PCGs) initiate with canonical start codon ATN. The gene order (trnQ-trnI-trnM) of tRNA shows a different rearrangement compared to ancestral insect gene order (trnI-trnQ-trnM). Almost all tRNAs have a typical cloverleaf secondary structure except for trnS1 (AGN) which lacks the dihydrouridine arm. At the beginning of the control region, we observed a conserved polyT", motif "ATTTA" and microsatellite (TA)n element. There are 21 intergenic regions and five overlapping regions ranging from 1 to 73 bp and 1 to 8 bp, respectively. The phylogenetic relationships based on nucleotide sequences of 13 PCGs using Maximum likelihood method showed the family level relationships as (Notodontidae + (Euteliidae + Noctuidae + (Erebidae + Nolidae))). The present study represents the similarity to phylogenetic analysis of Noctuoidea mitogenome. Moreover, the family Erebidae is the sister to the families of (Euteliidae + Noctuidae + Nolidae).
Collapse
Affiliation(s)
- Muzafar Riyaz
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | - Rauf Ahmad Shah
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India
| | | | - Sivasankaran Kuppusamy
- Division of Taxonomy and Biodiversity, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| |
Collapse
|
7
|
Sun Y, Zhu Y, Chen C, Zhu Q, Zhu Q, Zhou Y, Zhou X, Zhu P, Li J, Zhang H. The complete mitochondrial genome of Dysgonia stuposa (Lepidoptera: Erebidae) and phylogenetic relationships within Noctuoidea. PeerJ 2020; 8:e8780. [PMID: 32211241 PMCID: PMC7081777 DOI: 10.7717/peerj.8780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/21/2020] [Indexed: 11/20/2022] Open
Abstract
To determine the Dysgonia stuposa mitochondrial genome (mitogenome) structure and to clarify its phylogenetic position, the entire mitogenome of D. stuposa was sequenced and annotated. The D. stuposa mitogenome is 15,721 bp in size and contains 37 genes (protein-coding genes, transfer RNA genes, ribosomal RNA genes) usually found in lepidopteran mitogenomes. The newly sequenced mitogenome contained some common features reported in other Erebidae species, e.g., an A+T biased nucleotide composition and a non-canonical start codon for cox1 (CGA). Like other insect mitogenomes, the D. stuposa mitogenome had a conserved sequence 'ATACTAA' in an intergenic spacer between trnS2 and nad1, and a motif 'ATAGA' followed by a 20 bp poly-T stretch in the A+T rich region. Phylogenetic analyses supported D. stuposa as part of the Erebidae family and reconfirmed the monophyly of the subfamilies Arctiinae, Catocalinae and Lymantriinae within Erebidae.
Collapse
Affiliation(s)
- Yuxuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Yeshu Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qunshan Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qianqian Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Yanyue Zhou
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiaojun Zhou
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Peijun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Jun Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Haijun Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
8
|
Yang L, Dai J, Gao Q, Yuan G, Liu J, Sun Y, Sun Y, Wang L, Qian C, Zhu B, Liu C, Wei G. Characterization of the complete mitochondrial genome of Orthaga olivacea Warre (Lepidoptera Pyralidae) and comparison with other Lepidopteran insects. PLoS One 2020; 15:e0227831. [PMID: 32142522 PMCID: PMC7059908 DOI: 10.1371/journal.pone.0227831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
Orthaga olivacea Warre (Lepidoptera: Pyralidae) is an important agricultural pest of camphor trees (Cinnamomum camphora). To further supplement the known genome-level features of related species, the complete mitochondrial genome of Orthaga olivacea is amplified, sequenced, annotated, analyzed, and compared with 58 other species of Lepidopteran. The complete sequence is 15,174 bp, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a putative control region. Base composition is biased toward adenine and thymine (79.02% A+T) and A+T skew are slightly negative. Twelve of the 13 PCGs use typical ATN start codons. The exception is cytochrome oxidase 1 (cox1) that utilizes a CGA initiation codon. Nine PCGs have standard termination codon (TAA); others have incomplete stop codons, a single T or TA nucleotide. All the tRNA genes have the typical clover-leaf secondary structure, except for trnS(AGN), in which dihydrouridine (DHU) arm fails to form a stable stem-loop structure. The A+T-rich region (293 bp) contains a typical Lepidopter motifs 'ATAGA' followed by a 17 bp poly-T stretch, and a microsatellite-like (AT)13 repeat. Codon usage analysis revealed that Asn, Ile, Leu2, Lys, Tyr and Phe were the most frequently used amino acids, while Cys was the least utilized. Phylogenetic analysis suggested that among sequenced lepidopteran mitochondrial genomes, Orthaga olivacea Warre was most closely related to Hypsopygia regina, and confirmed that Orthaga olivacea Warre belongs to the Pyralidae family.
Collapse
Affiliation(s)
- Liangli Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Junjun Dai
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Qiuping Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Guozhen Yuan
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Jiang Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Yuxuan Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Lei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Cen Qian
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Baojian Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Chaoliang Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| | - Guoqing Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
9
|
Walsh TK, Perera O, Anderson C, Gordon K, Czepak C, McGaughran A, Zwick A, Hackett D, Tay WT. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol Evol 2019; 9:2933-2944. [PMID: 30891227 PMCID: PMC6405535 DOI: 10.1002/ece3.4971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
Five species of noctuid moths, Helicoverpa armigera, H. punctigera, H. assulta, H. zea, and H. gelotopoeon, are major agricultural pests inhabiting various and often overlapping global distributions. Visual identification of these species requires a great deal of expertise and misidentification can have repercussions for pest management and agricultural biosecurity. Here, we report on the complete mitochondrial genomes of H. assulta assulta and H. assulta afra, H. gelotopoeon, H. punctigera, H. zea, and H. armigera armigera and H. armigera conferta' assembled from high-throughput sequencing data. This study significantly increases the mitogenome resources for these five agricultural pests with sequences assembled from across different continents, including an H. armigera individual collected from an invasive population in Brazil. We infer the phylogenetic relationships of these five Helicoverpa species based on the 13 mitochondrial DNA protein-coding genes (PCG's) and show that two publicly available mitogenomes of H. assulta (KP015198 and KR149448) have been misidentified or incorrectly assembled. We further consolidate existing PCR-RFLP methods to cover all five Helicoverpa pest species, providing an updated method that will contribute to species differentiation and to future monitoring efforts of Helicoverpa pest species across different continents. We discuss the value of Helicoverpa mitogenomes to assist with species identification in view of the context of the rapid spread of H. armigera in the New World. With this work, we provide the molecular resources necessary for future studies of the evolutionary history and ecology of these species.
Collapse
Affiliation(s)
- Tom K. Walsh
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
| | - Omaththage Perera
- USDA‐ARS Southern Insect Management Research UnitStonevilleMississippi
| | - Craig Anderson
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General HospitalUniversity of EdinburghEdinburghUK
| | - Karl Gordon
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
| | - Cecilia Czepak
- Escola de AgronomiaUniversidade Federal de GoiásGoiâniaBrazil
| | - Angela McGaughran
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACTAustralia
| | - Andreas Zwick
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
| | | | - Wee Tek Tay
- CSIROBlack Mountain LaboratoriesCanberraACTAustralia
| |
Collapse
|
10
|
Huang Y, Liu Y, Zhu XY, Xin ZZ, Zhang HB, Zhang DZ, Wang JL, Tang BP, Zhou CL, Liu QN, Dai LS. Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny. Int J Biol Macromol 2018; 125:1257-1265. [PMID: 30240711 DOI: 10.1016/j.ijbiomac.2018.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/01/2022]
Abstract
The mitochondrial genome (mitogenome) plays an important role in revealing molecular evolution. In this study, the complete mitogenome of Grammodes geometrica (G. geometrica) (Lepidoptera: Erebidae) was sequenced and characterized. The nucleotide composition of the genome is highly A + T biased, accounting for 80.49%. Most protein-coding genes (PCGs) are initiated by ATN codons except for the cytochrome oxidase subunit 1 (cox1) gene, which was initiated by CGA. The order and orientation of genes with the order trnM-trnI-trnQ-nad2 is a typical rearrangement compared with those ancestral insects in which trnM is located between trnQ and nad2. Most tRNA genes were folded into the typical cloverleaf structure except for trnS1 (AGN). The A + T-rich region contains the conserved motif "ATAGA" followed by a 19 bp poly-T stretch, which was also observed in other Noctuoidea species. In addition, we reconstructed phylogenetic trees among the nucleotide alignments of five families of Noctuoidea species except the Oenosandridae. Finally, we achieved a well-supported tree, which showed that G. geometrica belongs to the Erebidae family. Moreover, the relationships at the family-level can be displayed as follows: (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).
Collapse
Affiliation(s)
- Yan Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
11
|
Yuan ML, Zhang QL, Zhang L, Jia CL, Li XP, Yang XZ, Feng RQ. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. Mol Phylogenet Evol 2018; 122:116-124. [DOI: 10.1016/j.ympev.2018.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/26/2017] [Accepted: 01/20/2018] [Indexed: 11/16/2022]
|
12
|
Chen L, Huang JR, Dai J, Guo YF, Sun JT, Hong XY. Intraspecific mitochondrial genome comparison identified CYTB as a high-resolution population marker in a new pest Athetis lepigone. Genomics 2018; 111:744-752. [PMID: 29684432 DOI: 10.1016/j.ygeno.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/16/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
A new outbreak pest, Athetis lepigone (Möschler) (Lepidoptera: Noctuidae), has caused severe economic loss in maize crops in China. In order to conduct population genetics study with a more polymorphic and scientific mitochondrial marker, we sequenced the complete mitochondrial genomes of 13 different A. lepigone individuals. Intraspecific comparison of all PCGs showed that the NADH dehydrogenase and cytochrome b genes had the highest nucleotide diversity. We also found evidence of episodic positive selection on two amino acids, which are encoded by NADH dehydrogenase genes (ND3 and ND4L), against a background of widespread neutral selection of all other mitochondrial PCGs. The genetic divergence observed in this study indicated that the cytochrome b gene (CYTB) is better than COI at recovering population structure. The preliminary population genetic analysis illustrated strong gene flow among A. lepigone populations in China. Our study provides basic information for further research on population genetics of A. lepigone.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Rong Huang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, China
| | - Jun Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan-Fei Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
13
|
Sivasankaran K, Mathew P, Anand S, Ceasar SA, Mariapackiam S, Ignacimuthu S. Complete mitochondrial genome sequence of fruit-piercing moth Eudocima phalonia (Linnaeus, 1763) (Lepidoptera: Noctuoidea). GENOMICS DATA 2017; 14:66-81. [PMID: 29021958 PMCID: PMC5633087 DOI: 10.1016/j.gdata.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 02/01/2023]
Abstract
The complete mitochondrial genome of the fruit piercing moth Eudocima phalonia (Linnaeus, 1763) (Lepidoptera: Noctuoidea) was sequenced and characterized (Genbank Accession No: KY196412). The complete mitogenome is a circular molecule of 15,575 bp length, consisting of 13 protein-coding genes (PCGs), two ribosomal RNA genes (rrnS and rrnL), 22 transfer RNA (tRNA) genes and an A + T-rich region (D-loop). The nucleotide composition of the genome is highly A + T biased, accounting for 80.67% of nucleotides. All tRNAs have putative secondary structures that are characteristic of mitochondrial tRNA. Most of the PCGs were initiated by typical ATN codons. Five genes were initiated by unusual codons. Cox1 gene was initiated by an unusual CGA codon and terminated by the typical stop codon GAA. Six genes ended with a single T. The A + T-rich region of 336 bp consisted of repetitive sequences, including two ATAGA motifs, a 19 bp poly-T stretch and three microsatellite-like regions ((TA)4, (TA)6 and two (TA)7). Moreover, three large tandem (one 40 bp and two 25 bp) repeated elements were identified in A + T-rich region. Phylogenetic analysis using PCGs revealed that Superfamily Noctuoidea is a monophyletic group.
Collapse
Affiliation(s)
- Kuppusamy Sivasankaran
- Entomology Research Institute, Loyola College, University of Madras, Chennai 600 034, Tamil Nadu, India
| | - Pratheesh Mathew
- Entomology Research Institute, Loyola College, University of Madras, Chennai 600 034, Tamil Nadu, India
| | - Sekar Anand
- Entomology Research Institute, Loyola College, University of Madras, Chennai 600 034, Tamil Nadu, India
| | - Stanislaus Antony Ceasar
- Entomology Research Institute, Loyola College, University of Madras, Chennai 600 034, Tamil Nadu, India
- Centre for Plant Sciences, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS29JT, United Kingdom
| | | | - Savarimuthu Ignacimuthu
- Entomology Research Institute, Loyola College, University of Madras, Chennai 600 034, Tamil Nadu, India
| |
Collapse
|
14
|
Kim MJ, Jeong JS, Kim JS, Jeong SY, Kim I. Complete mitochondrial genome of the lappet moth, Kunugia undans (Lepidoptera: Lasiocampidae): genomic comparisons among macroheteroceran superfamilies. Genet Mol Biol 2017; 40:717-723. [PMID: 28767123 PMCID: PMC5596373 DOI: 10.1590/1678-4685-gmb-2016-0298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/25/2017] [Indexed: 11/21/2022] Open
Abstract
The mitochondrial genome (mitogenome) characteristics of the monotypic Lasiocampoidea are largely unknown, because only limited number of mitogenomes is available from this superfamily. In this study, we sequenced the complete mitogenome of the lappet moth, Kunugia undans (Lepidoptera: Lasiocampidae) and compared it to those of Lasiocampoidea and macroheteroceran superfamilies (59 species in six superfamilies). The 15,570-bp K. undans genome had one additional trnR that was located between trnA and trnN loci and this feature was unique in Macroheterocera, including Lasiocampoidea. Considering that the two trnR copies are located in tandem with proper secondary structures and identical anticodons, a gene duplication event might be responsible for the presence of the two tRNAs. Nearly all macroheteroceran species, excluding Lasiocampoidea, have a spacer sequence (1-34 bp) at the trnS2 and ND1 junction, but most lasiocampid species, including K. undans, have an overlap at the trnS2 and ND1 junction, which represents a different genomic feature in Lasiocampoidea. Nevertheless, a TTAGTAT motif, which is typically detected in Macroheterocera at the trnS2 and ND1 junction, was also detected in all Lasiocampoidea. In summary, the general mitogenome characteristics of Lasiocampoidea did not differ greatly from the remaining macroheteroceran superfamilies, but it did exhibit some unique features.
Collapse
Affiliation(s)
- Min Jee Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jun Seong Jeong
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jong Seok Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Su Yeon Jeong
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Iksoo Kim
- Department of Applied Biology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
15
|
Sun Y, Chen C, Gao J, Abbas MN, Kausar S, Qian C, Wang L, Wei G, Zhu BJ, Liu CL. Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. PLoS One 2017; 12:e0178773. [PMID: 28598968 PMCID: PMC5466310 DOI: 10.1371/journal.pone.0178773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022] Open
Abstract
In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including 'ATAGA' motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family.
Collapse
Affiliation(s)
- Yu Sun
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jin Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | | | - Saima Kausar
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Cen Qian
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bao-Jian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chao-Liang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Comparative Mitochondrial Genome Analysis of Eligma narcissus and other Lepidopteran Insects Reveals Conserved Mitochondrial Genome Organization and Phylogenetic Relationships. Sci Rep 2016; 6:26387. [PMID: 27222440 PMCID: PMC4879558 DOI: 10.1038/srep26387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 11/08/2022] Open
Abstract
In this study, we sequenced the complete mitochondrial genome of Eligma narcissus and compared it with 18 other lepidopteran species. The mitochondrial genome (mitogenome) was a circular molecule of 15,376 bp containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and an adenine (A) + thymine (T) − rich region. The positive AT skew (0.007) indicated the occurrence of more As than Ts. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by the CGA sequence, as observed in other lepidopterans. The results of the codon usage analysis indicated that Asn, Ile, Leu, Tyr and Phe were the five most frequent amino acids. All tRNA genes were shown to be folded into the expected typical cloverleaf structure observed for mitochondrial tRNA genes. Phylogenetic relationships were analyzed based on the nucleotide sequences of 13 PCGs from other insect mitogenomes, which confirmed that E. narcissus is a member of the Noctuidae superfamily.
Collapse
|
17
|
Characterization of the Complete Mitochondrial Genome of Cerura menciana and Comparison with Other Lepidopteran Insects. PLoS One 2015; 10:e0132951. [PMID: 26309239 PMCID: PMC4550444 DOI: 10.1371/journal.pone.0132951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/20/2015] [Indexed: 11/19/2022] Open
Abstract
The complete mitochondrial genome (mitogenome) of Cerura menciana (Lepidoptera: Notodontidae) was sequenced and analyzed in this study. The mitogenome is a circular molecule of 15,369 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and a A+T-rich region. The positive AT skew (0.031) indicated that more As than Ts were present. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by CAG. Two of the 13 PCGs contained the incomplete termination codon T or TA, while the others were terminated with the stop codon TAA. The A+T-rich region was 372 bp in length and consisted of an ‘ATAGA’ motif followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 and a poly-A element upstream of the trnM gene. Results examining codon usage indicated that Asn, Ile, Leu2, Lys, Tyr and Phe were the six most frequently occurring amino acids, while Cys was the rarest. Phylogenetic relationships, analyzed based on the nucleotide sequences of the 13 PCGs from other insect mitogenomes, confirmed that C. menciana belongs to the Notodontidae family.
Collapse
|