1
|
Wu RW, Liu XJ, Ouyang S, Wu XP. Comparative Analyses of the Complete Mitochondrial Genomes of Three Lamprotula (Bivalvia: Unionidae) Species: Insight into the Shortcomings of Mitochondrial DNA for Recently Diverged Species Delimitation. MALACOLOGIA 2020. [DOI: 10.4002/040.063.0106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiong-Jun Liu
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
2
|
Soroka M. Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Capt C, Bouvet K, Guerra D, Robicheau BM, Stewart DT, Pante E, Breton S. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Sci Rep 2020; 10:1087. [PMID: 31974502 PMCID: PMC6978325 DOI: 10.1038/s41598-020-57975-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
In animals, strictly maternal inheritance (SMI) of mitochondria is the rule, but one exception (doubly uniparental inheritance or DUI), marked by the transmission of sex-specific mitogenomes, has been reported in bivalves. Associated with DUI is a frequent modification of the mitochondrial cox2 gene, as well as additional sex-specific mitochondrial genes not involved in oxidative phosphorylation. With the exception of freshwater mussels (for 3 families of the order Unionida), these DUI-associated features have only been shown in few species [within Mytilidae (order Mytilida) and Veneridae (order Venerida)] because of the few complete sex-specific mitogenomes published for these orders. Here, we present the complete sex-specific mtDNAs of two recently-discovered DUI species in two families of the order Venerida, Scrobicularia plana (Semelidae) and Limecola balthica (Tellinidae). These species display the largest differences in genome size between sex-specific mitotypes in DUI species (>10 kb), as well as the highest mtDNA divergences (sometimes reaching >50%). An important in-frame insertion (>3.5 kb) in the male cox2 gene is partly responsible for the differences in genome size. The S. plana cox2 gene is the largest reported so far in the Kingdom Animalia. The mitogenomes may be carrying sex-specific genes, indicating that general mitochondrial features are shared among DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | - Karim Bouvet
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Davide Guerra
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | | | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Ouimet P, Kienzle L, Lubosny M, Burzyński A, Angers A, Breton S. The ORF in the control region of the female-transmitted Mytilus mtDNA codes for a protein. Gene 2020; 725:144161. [DOI: 10.1016/j.gene.2019.144161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023]
|
5
|
Wu RW, Liu XJ, Wang S, Roe KJ, Ouyang S, Wu XP. Analysis of mitochondrial genomes resolves the phylogenetic position of Chinese freshwater mussels (Bivalvia, Unionidae). Zookeys 2019; 812:23-46. [PMID: 30636909 PMCID: PMC6328525 DOI: 10.3897/zookeys.812.29908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Abstract
The Yangtze River basin is one of the most species-rich regions for freshwater mussels on Earth, but is gravely threatened by anthropogenic activities. However, conservation planning and management of mussel species has been hindered by a number of taxonomic uncertainties. In order to clarify the taxonomic status and phylogenetic position of these species, mitochondrial genomes of four species (Acuticostachinensis, Schistodesmuslampreyanus, Cuneopsisheudei and Cuneopsiscapitatus) were generated and analyzed along with data from 43 other mitogenomes. The complete F-type mitogenomes of A.chinensis, S.lampreyanus, C.heudei, and C.capitatus are 15652 bp, 15855 bp, 15892 bp, and 15844 bp, respectively, and all four F-type mitogenomes have the same pattern of gene arrangement. ML and BI trees based on the mitogenome dataset are completely congruent, and indicate that the included Unionidae belong to three subfamilies with high bootstrap and posterior probabilities, i.e., Unioninae (Aculamprotula, Cuneopsis, Nodularia, and Schistodesmus), Anodontinae (Cristaria, Arconaia, Acuticosta, Lanceolaria, Anemina, and Sinoanodonta), and Gonideinae (Ptychorhynchus, Solenaia, Lamprotula, and Sinohyriopsis). Results also indicate that A.chinensis has affinities with Arconaialanceolata and Lanceolariagrayii and is a member of the subfamily Anodontinae.
Collapse
Affiliation(s)
- Rui-Wen Wu
- School of Life Sciences, Nanchang University, Honggutan-New-District, Nanchang 330031, ChinaNanchang UniversityNanchangChina
| | - Xiong-Jun Liu
- School of Resource, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, ChinaIowa State UniversityAmesUnited States of America
- Poyang Lake Key Laboratory of Environment and Resource Utilization (Nanchang University), Ministry of Education, Nanchang 330031, ChinaNanchang UniversityNanchangChina
| | - Sa Wang
- School of Life Sciences, Nanchang University, Honggutan-New-District, Nanchang 330031, ChinaNanchang UniversityNanchangChina
| | - Kevin J. Roe
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, 50011, United States of AmericaIowa State UniversityAmesUnited States of America
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Honggutan-New-District, Nanchang 330031, ChinaNanchang UniversityNanchangChina
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Honggutan-New-District, Nanchang 330031, ChinaNanchang UniversityNanchangChina
| |
Collapse
|
6
|
Burzyński A, Soroka M. Complete paternally inherited mitogenomes of two freshwater mussels Unio pictorum and Sinanodonta woodiana (Bivalvia: Unionidae). PeerJ 2018; 6:e5573. [PMID: 30221094 PMCID: PMC6138038 DOI: 10.7717/peerj.5573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Freshwater bivalves from the family Unionidae usually have two very divergent mitogenomes, inherited according to the doubly uniparental model. The early divergence of these two mitogenomic lineages gives a unique opportunity to use two mitogenomic data sets in a single phylogenetic context. However, the number of complete sequences of the maternally inherited mitogenomes of these animals available in GenBank greatly exceeds that of the paternally inherited mitogenomes. This is a problem for phylogenetic reconstruction because it limits the use of both mitogenomic data sets. Moreover, since long branch attraction phenomenon can bias reconstructions if only a few but highly divergent taxa are considered, the shortage of the faster evolving paternally inherited mitogenome sequences is a real problem. Here we provide, for the first time, complete sequences of the M mitogenomes sampled from Polish populations of two species: native Unio pictorum and invasive Sinanodonta woodiana. It increases the available set of mitogenomic pairs to 18 species per family, and allows unambiguous reconstruction of phylogenetic relationships among them. The reconstructions based on M and F mitogenomes which were separated for many millions of years, and subject to differing evolutionary dynamics, are fully congruent.
Collapse
Affiliation(s)
- Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marianna Soroka
- University of Szczecin, Faculty of Biology, Department of Genetics, Szczecin, Poland
| |
Collapse
|
7
|
Wu RW, Liu YT, Wang S, Liu XJ, Zanatta DT, Roe KJ, Song XL, An CT, Wu XP. Testing the utility of DNA barcodes and a preliminary phylogenetic framework for Chinese freshwater mussels (Bivalvia: Unionidae) from the middle and lower Yangtze River. PLoS One 2018; 13:e0200956. [PMID: 30089124 PMCID: PMC6082535 DOI: 10.1371/journal.pone.0200956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022] Open
Abstract
The middle and lower portions of the Yangtze River basin is the most species-rich region for freshwater mussels in Asia. The management and conservation of the taxa in this region has been greatly hampered by the lack of a well-developed phylogeny and species-level taxonomic framework. In this study, we tested the utility of two mitochondrial genes commonly used as DNA barcodes: the first subunit of the cytochrome oxidase c gene (COI) and the first subunit of the NADH dehydrogenase gene (ND1) for 34 putative species representing 15 genera, and also generated phylogenetic hypotheses for Chinese unionids based on the combined dataset of the two mitochondrial genes. The results showed that both loci performed well as barcodes for species identification, but the ND1 sequences provided better resolution when compared to COI. Based on the two-locus dataset, Bayesian Inference (BI) and Maximum Likelihood (ML) phylogenetic analyses indicated 3 of the 15 genera of Chinese freshwater mussels examined were polyphyletic. Additionally, the analyses placed the 15 genera into 3 subfamilies: Unioninae (Aculamprotula, Cuneopsis, Nodularia and Schistodesmus), Gonideninae (Lamprotula, Solenaia and Ptychorhychus) and Anodontinae (Cristaria, Arconaia, Acuticosta, Lanceolaria, Anemina and Sinoanodonta). Our results contradict previous taxonomic classification that placed the genera Arconaia, Acuticosta and Lanceolaria in the Unioninae. This study represents one of the first attempts to develop a molecular phylogenetic framework for the Chinese members of the Unionidae and will provide a basis for future research on the evolution, ecology, and conservation of Chinese freshwater mussels.
Collapse
Affiliation(s)
- Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yi-Tong Liu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Sa Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xiong-Jun Liu
- School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - David T. Zanatta
- Biology Department, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Kevin J. Roe
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, United States of America
| | - Xue-Lin Song
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Chang-Ting An
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Center for Watershed Ecology, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
8
|
Chase EE, Robicheau BM, Veinot S, Breton S, Stewart DT. The complete mitochondrial genome of the hermaphroditic freshwater mussel Anodonta cygnea (Bivalvia: Unionidae): in silico analyses of sex-specific ORFs across order Unionoida. BMC Genomics 2018; 19:221. [PMID: 29587633 PMCID: PMC5870820 DOI: 10.1186/s12864-018-4583-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Doubly uniparental inheritance (DUI) of mitochondrial DNA in bivalves is a fascinating exception to strictly maternal inheritance as practiced by all other animals. Recent work on DUI suggests that there may be unique regions of the mitochondrial genomes that play a role in sex determination and/or sexual development in freshwater mussels (order Unionoida). In this study, one complete mitochondrial genome of the hermaphroditic swan mussel, Anodonta cygnea, is sequenced and compared to the complete mitochondrial genome of the gonochoric duck mussel, Anodonta anatina. An in silico assessment of novel proteins found within freshwater bivalve species (known as F-, H-, and M-open reading frames or ORFs) is conducted, with special attention to putative transmembrane domains (TMs), signal peptides (SPs), signal cleavage sites (SCS), subcellular localization, and potential control regions. Characteristics of TMs are also examined across freshwater mussel lineages. RESULTS In silico analyses suggests the presence of SPs and SCSs and provides some insight into possible function(s) of these novel ORFs. The assessed confidence in these structures and functions was highly variable, possibly due to the novelty of these proteins. The number and topology of putative TMs appear to be maintained among both F- and H-ORFs, however, this is not the case for M-ORFs. There does not appear to be a typical control region in H-type mitochondrial DNA, especially given the loss of tandem repeats in unassigned regions when compared to F-type mtDNA. CONCLUSION In silico analyses provides a useful tool to discover patterns in DUI and to navigate further in situ analyses related to DUI in freshwater mussels. In situ analysis will be necessary to further explore the intracellular localizations and possible role of these open reading frames in the process of sex determination in freshwater mussel.
Collapse
Affiliation(s)
- E. E. Chase
- Department of Biology, Acadia University, Wolfville, NS Canada
| | - B. M. Robicheau
- Department of Biology, Dalhousie University, Halifax, NS Canada
| | - S. Veinot
- Department of Biology, Dalhousie University, Halifax, NS Canada
| | - S. Breton
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - D. T. Stewart
- Department of Biology, Acadia University, Wolfville, NS Canada
| |
Collapse
|
9
|
Soroka M, Burzyński A. Hermaphroditic freshwater mussel Anodonta cygnea does not have supranumerary open reading frames in the mitogenome. Mitochondrial DNA B Resour 2017; 2:862-864. [PMID: 33474013 PMCID: PMC7800200 DOI: 10.1080/23802359.2017.1407705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
The complete mitogenome of Anodonta cygnea is 15,613 bp long. This compact, circular molecule contains the set of 37 genes, typical for invertebrate mitogenomes, in the same order and orientation as in maternally inherited genomes of other bivalves from the same subfamily. There are only two unassigned regions longer than 200 bp (266 bp and 274 bp) and no indication of any supranumerary open reading frames.
Collapse
Affiliation(s)
- Marianna Soroka
- Department of Genetics, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
10
|
Evolution of sex-dependent mtDNA transmission in freshwater mussels (Bivalvia: Unionida). Sci Rep 2017; 7:1551. [PMID: 28484275 PMCID: PMC5431520 DOI: 10.1038/s41598-017-01708-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Doubly uniparental inheritance (DUI) describes a mode of mtDNA transmission widespread in gonochoric freshwater mussels (Bivalvia: Palaeoheterodonta: Unionida). In this system, both female- and male-transmitted mtDNAs, named F and M respectively, coexist in the same species. In unionids, DUI is strictly correlated to gonochorism and to the presence of the atypical open reading frames (ORFans) F-orf and M-orf, respectively inside F and M mtDNAs, which are hypothesized to participate in sex determination. However, DUI is not found in all three Unionida superfamilies (confirmed in Hyrioidea and Unionoidea but not in Etherioidea), raising the question of its origin in these bivalves. To reconstruct the co-evolution of DUI and of ORFans, we sequenced the mtDNAs of four unionids (two gonochoric with DUI, one gonochoric and one hermaphroditic without DUI) and of the related gonochoric species Neotrigonia margaritacea (Palaeoheterodonta: Trigoniida). Our analyses suggest that rearranged mtDNAs appeared early during unionid radiation, and that a duplicated and diverged atp8 gene evolved into the M-orf associated with the paternal transmission route in Hyrioidea and Unionoidea, but not in Etherioidea. We propose that novel mtDNA-encoded genes can deeply influence bivalve sex determining systems and the evolution of the mitogenomes in which they occur.
Collapse
|
11
|
Wen HB, Cao ZM, Hua D, Xu P, Ma XY, Jin W, Yuan XH, Gu RB. The Complete Maternally and Paternally Inherited Mitochondrial Genomes of a Freshwater Mussel Potamilus alatus (Bivalvia: Unionidae). PLoS One 2017; 12:e0169749. [PMID: 28068380 PMCID: PMC5222514 DOI: 10.1371/journal.pone.0169749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type) or females (F-type), is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp). Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf) were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp) is much shorter than in other sequenced unionid mitogenomes (531-576 bp), which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.
Collapse
Affiliation(s)
- Hai B Wen
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Zhe M Cao
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Dan Hua
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xue Y Ma
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xin H Yuan
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Ruo B Gu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| |
Collapse
|
12
|
The complete maternal and paternal mitochondrial genomes of Unio crassus: Mitochondrial molecular clock and the overconfidence of molecular dating. Mol Phylogenet Evol 2016; 107:605-608. [PMID: 27956259 DOI: 10.1016/j.ympev.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022]
Abstract
The availability of a rapidly growing number of complete mitochondrial genome sequences provokes high confidence dating approaches. However, even if the congruence between mitochondrial and nuclear markers is reasonable, the resulting topologies are frequently questionable. The unique opportunity to study the evolutionary history of two independent mitochondrial genomes in one phylogenetic context exists in the freshwater mussels family Unionidae. The two lineages function under doubly uniparental inheritance since well before the emergence of the family. Despite the relatively high number of available complete sequences of maternally inherited genomes, comparative analyses are limited by the small number of sequences of counterpart paternally inherited genomes. We have sequenced for the first time the representative set of five sequences (two maternal and three paternal) from the species Unio crassus. Comparative analysis of the phylogenies reconstructed using relevant mitogenomic data available in GenBank (13 species in total) reveal that single - genome inferences are congruent only if the relaxed clock is assumed.
Collapse
|
13
|
Soroka M, Burzyński A. Complete male mitochondrial genome of Anodonta anatina (Mollusca: Unionidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1679-80. [PMID: 25317641 DOI: 10.3109/19401736.2014.958725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Anodonta anatina is a freshwater mussel of the family Unionidae. These mussels have a unique mitochondria inheritance system named doubly uniparental inheritance (DUI). Under DUI males have two, potentially very divergent mitochondrial genomes: F-type inherited from mother and M-type inherited from father. F-type is present in soma whereas M-type is present in gonadal tissues and sperm. Here we report two M-type sequences of complete mitochondrial genomes from Anodonta anatina. They are 16,906 bp long and their sequences are similar (0.1% divergence). The genome organization is identical to the other Unionidean M-type genomes published to date. There are 38 genes, including the recently described M-type specific M ORF. The presence of tRNA-like repeat in one of the noncoding regions, suggests that the control region is located in this area. Nucleotide composition is quite extreme, with AT content (66.2%) higher than in any other of the six published Unionidean M genomes.
Collapse
Affiliation(s)
- Marianna Soroka
- a Department of Genetics , University of Szczecin , Szczecin , Poland
| | - Artur Burzyński
- b Institute of Oceanology, Polish Academy of Sciences , Sopot , Poland , and.,c Institute of Biology and Environmental Protection, Pommeranian University in Słupsk , Poland
| |
Collapse
|
14
|
An C, Ouyang S, Zhou CH, Wu XP. The complete F-type mitochondrial genome of ChineseAnodonta arcaeformis(Bivalvia: Unionidae: Anodontinae). ACTA ACUST UNITED AC 2014; 27:1552-3. [DOI: 10.3109/19401736.2014.953133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Song XL, Ouyang S, Zhou CH, Wu XP. Complete maternal mitochondrial genome of freshwater mussel Anodonta lucida (Bivalvia: Unionidae: Anodontinae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:549-50. [PMID: 24708121 DOI: 10.3109/19401736.2014.905852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The taxonomy of genus Anodonta is rather ambiguous, as it has great variation on the shell shape. Anodonta lucida is an endemic species of freshwater mussel in China, characterized by shining epidermis. The complete maternal mitochondrial genome of freshwater mussel A. lucida was first determined (GenBank accession no. KF667529). The genome is 16,285 bp long with an AT content of 64.02%. All the 37 typical animal mitochondrial genes are found, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. The genome also contains 24 unassigned regions, ranking from 1 to 830 bp in length, the largest of which is the putative control region (CR). The base composition of the genome is A (36.32%), G (13.01%), T (27.70%) and C (22.98%). Gene order is identical to other species of Unionidae except Gonideinae.
Collapse
Affiliation(s)
- Xue-Lin Song
- a Center for Watershed Ecology, Institute of Life Science, Nanchang University , Nanchang , People's Republic of China , and.,b School of Life Sciences and Food Engineering, Nanchang University , Nanchang , People's Republic of China
| | - Shan Ouyang
- b School of Life Sciences and Food Engineering, Nanchang University , Nanchang , People's Republic of China
| | - Chun-Hua Zhou
- a Center for Watershed Ecology, Institute of Life Science, Nanchang University , Nanchang , People's Republic of China , and.,b School of Life Sciences and Food Engineering, Nanchang University , Nanchang , People's Republic of China
| | - Xiao-Ping Wu
- a Center for Watershed Ecology, Institute of Life Science, Nanchang University , Nanchang , People's Republic of China , and.,b School of Life Sciences and Food Engineering, Nanchang University , Nanchang , People's Republic of China
| |
Collapse
|