1
|
Aghová T, Palupčíková K, Šumbera R, Frynta D, Lavrenchenko LA, Meheretu Y, Sádlová J, Votýpka J, Mbau JS, Modrý D, Bryja J. Multiple radiations of spiny mice (Rodentia: Acomys) in dry open habitats of Afro-Arabia: evidence from a multi-locus phylogeny. BMC Evol Biol 2019; 19:69. [PMID: 30832573 PMCID: PMC6399835 DOI: 10.1186/s12862-019-1380-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Background Spiny mice of the genus Acomys are distributed mainly in dry open habitats in Africa and the Middle East, and they are widely used as model taxa for various biological disciplines (e.g. ecology, physiology and evolutionary biology). Despite their importance, large distribution and abundance in local communities, the phylogeny and the species limits in the genus are poorly resolved, and this is especially true for sub-Saharan taxa. The main aims of this study are (1) to reconstruct phylogenetic relationships of Acomys based on the largest available multilocus dataset (700 genotyped individuals from 282 localities), (2) to identify the main biogeographical divides in the distribution of Acomys diversity in dry open habitats in Afro-Arabia, (3) to reconstruct the historical biogeography of the genus, and finally (4) to estimate the species richness of the genus by application of the phylogenetic species concept. Results The multilocus phylogeny based on four genetic markers shows presence of five major groups of Acomys called here subspinosus, spinosissimus, russatus, wilsoni and cahirinus groups. Three of these major groups (spinosissimus, wilsoni and cahirinus) are further sub-structured to phylogenetic lineages with predominantly parapatric distributions. Combination of alternative species delimitation methods suggests the existence of 26 molecular operational taxonomic units (MOTUs), potentially corresponding to separate species. The highest genetic diversity was found in Eastern Africa. The origin of the genus Acomys is dated to late Miocene (ca. 8.7 Ma), when the first split occurred between spiny mice of eastern (Somali-Masai) and south-eastern (Zambezian) savannas. Further diversification, mostly in Plio-Pleistocene, and the current distribution of Acomys were influenced by the interplay of global climatic factors (e.g., Messinian salinity crisis, intensification of Northern Hemisphere glaciation) with local geomorphology (mountain chains, aridity belts, water bodies). Combination of divergence dating, species distribution modelling and historical biogeography analysis suggests repeated “out-of-East-Africa” dispersal events into western Africa, the Mediterranean region and Arabia. Conclusions The genus Acomys is very suitable model for historical phylogeographic and biogeographic reconstructions of dry non-forested environments in Afro-Arabia. We provide the most thorough phylogenetic reconstruction of the genus and identify major factors that influenced its evolutionary history since the late Miocene. We also highlight the urgent need of integrative taxonomic revision of east African taxa. Electronic supplementary material The online version of this article (10.1186/s12862-019-1380-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T Aghová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65, Brno, Czech Republic. .,Department of Zoology, National Museum, 115 79, Prague, Czech Republic.
| | - K Palupčíková
- Department of Zoology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - R Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - D Frynta
- Department of Zoology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - L A Lavrenchenko
- A. N. Severtsov Institute of Ecology and Evolution RAS, 119071, Moscow, Russia
| | - Y Meheretu
- Department of Biology and Institute of Mountain Research and Development, Mekelle University, P.O. Box 3102, Mekelle, Tigray, Ethiopia
| | - J Sádlová
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - J Votýpka
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - J S Mbau
- Department of Land Resource Management and Agricultural Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi, Kenya
| | - D Modrý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic.,Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42, Brno, Czech Republic
| | - J Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, 602 00, Brno, Czech Republic
| |
Collapse
|
2
|
King SRB, Schoenecker KA, Fike JA, Oyler‐McCance SJ. Long-term persistence of horse fecal DNA in the environment makes equids particularly good candidates for noninvasive sampling. Ecol Evol 2018; 8:4053-4064. [PMID: 29721279 PMCID: PMC5916305 DOI: 10.1002/ece3.3956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/10/2022] Open
Abstract
Fecal DNA collected noninvasively can provide valuable information about genetic and ecological characteristics. This approach has rarely been used for equids, despite the need for conservation of endangered species and management of abundant feral populations. We examined factors affecting the efficacy of using equid fecal samples for conservation genetics. First, we evaluated two fecal collection methods (paper bag vs. ethanol). Then, we investigated how time since deposition and month of collection impacted microsatellite amplification success and genotyping errors. Between May and November 2014, we collected feral horse fecal samples of known age each month in a feral horse Herd Management Area in western Colorado and documented deterioration in the field with photographs. Samples collected and dried in paper bags had significantly higher amplification rates than those collected and stored in ethanol. There was little difference in the number of loci that amplified per sample between fresh fecal piles and those that had been exposed to the environment for up to 2 months (in samples collected in paper bags). After 2 months of exposure, amplification success declined. When comparing fresh (0–2 months) and old (3–6 months) fecal piles, samples from fresh piles had more matching genotypes across samples, better amplification success and less allelic dropout. Samples defecated during the summer and collected within 2 months of deposition had highest number of genotypes matching among samples, and lowest rates of amplification failure and allelic dropout. Due to the digestive system and amount of fecal material produced by equids, as well as their occurrence in arid ecosystems, we suggest that they are particularly good candidates for noninvasive sampling using fecal DNA.
Collapse
Affiliation(s)
- Sarah R. B. King
- Natural Resource Ecology LaboratoryDepartment of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsCOUSA
| | | | - Jennifer A. Fike
- United States Geological SurveyFort Collins Science CenterFort CollinsCOUSA
| | | |
Collapse
|
3
|
Ito H, Ogden R, Langenhorst T, Inoue-Murayama M. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations. Zoo Biol 2016; 36:87-94. [PMID: 27981608 DOI: 10.1002/zoo.21342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2022]
Abstract
Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hideyuki Ito
- Wildlife Research Center, Kyoto University, Kyoto, Japan.,Kyoto City Zoo, Kyoto, Japan
| | - Rob Ogden
- Wildlife Research Center, Kyoto University, Kyoto, Japan.,TRACE Wildlife Forensics Network, Edinburgh, United Kingdom
| | | | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|