Attwood SW, Liu L, Huo GN. Population genetic structure and geographical variation in Neotricula aperta (Gastropoda: Pomatiopsidae), the snail intermediate host of Schistosoma mekongi (Digenea: Schistosomatidae).
PLoS Negl Trop Dis 2019;
13:e0007061. [PMID:
30689628 PMCID:
PMC6366693 DOI:
10.1371/journal.pntd.0007061]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/07/2019] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background
Neotricula aperta is the snail-intermediate host of the parasitic blood-fluke Schistosoma mekongi which causes Mekong schistosomiasis in Cambodia and the Lao PDR. Despite numerous phylogenetic studies only one DNA-sequence based population-genetic study of N. aperta had been published, and the origin, structure and persistence of N. aperta were poorly understood. Consequently, a phylogenetic and population genetic study was performed, with addition of new data to pre-existing DNA-sequences for N. aperta from remote and inaccessible habitats, including one new taxon from Laos and 505 bp of additional DNA-sequence for all sampled taxa,.
Principal findings
Spatial Principal Component Analysis revealed the presence of significant spatial-genetic clustering. Genetic-distance-based clustering indicated four populations with near perfect match to a priori defined ecogeographical regions. Spring-dwelling taxa were found to form an ecological isolate relative to other N. aperta. The poor dispersal capabilities suggested by spatial-genetic analyses were confirmed by Bayesian inference of migration rates. Population divergence time estimation implied a mid-Miocene colonisation of the present range, with immediate and rapid radiation in each ecogeographical region. Estimated effective population sizes were large (120–310 thousand).
Conclusions
The strong spatial-genetic structure confirmed the poor dispersal capabilities of N. aperta—suggesting human-mediated reintroduction of disease to controlled areas as the primary reason for control failure. The isolation of the spring-dwelling taxa and ecogeographical structure suggests adaptation of sub-populations to different habitats; the epidemiological significance of this needs investigation. The large effective population sizes indicate that the high population densities observed in surveyed habitats are also present in inaccessible areas; affording great potential for recrudescence driven by animal-reservoir transmission in remote streams. Mid-Miocene colonisation implies heterochronous evolution of these snails and associated schistosomes and suggests against coevolution of snail and parasite. Heterochronicity favours ecological factors as shapers of host-parasite specificity and greater potential for escape from schistosomiasis control through host-switching.
The disease Mekong schistosomiasis poses a threat to the health of about 1.5 million people living near the Mekong river and its tributaries in Cambodia and Laos. It is a water-borne parasite transmitted by direct contact with water in which freshwater snails of the species Neotricula aperta live. Control of the snails is an effective approach to control of the parasite; however, because many suitable habitats for N. aperta occur in remote and inaccessible areas, knowledge of N. aperta population sizes and interconnectivity is insufficient for the design of effective snail control interventions. Although much of the region is difficult to survey by conventional means, population genetics can be used to estimate population structure and total size from small samples of accessible populations. The study added to existing data-sets, to give more population samples and longer DNA-sequences, together with improved analytical approaches to provide a better overview of N. aperta. The findings suggest that N. aperta in different kinds of habitats are also genetically different, with very low levels of migration between them; this genetic clustering is greater than expected from spatial distance alone. Further work is needed to determine if these different clusters vary in ability to transmit the parasite. The overall population size estimates were very large; thus suggesting that high snail population densities observed in accessible habitats are also characteristic of inaccessible populations—parasites are therefore more likely to return after disease control by immigration from remote areas. Finally, the timing of evolutionary events for snails and parasites was found to differ; this implies that the parasite may not be as strongly restricted to one species of snail as originally thought, which has implications for avoidance of parasite control by host-switching.
Collapse