1
|
Stampar SN, Broe MB, Macrander J, Reitzel AM, Brugler MR, Daly M. Linear Mitochondrial Genome in Anthozoa (Cnidaria): A Case Study in Ceriantharia. Sci Rep 2019; 9:6094. [PMID: 30988357 PMCID: PMC6465557 DOI: 10.1038/s41598-019-42621-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Sequences and structural attributes of mitochondrial genomes have played a critical role in the clarification of relationships among Cnidaria, a key phylum of early-diverging animals. Among the major lineages of Cnidaria, Ceriantharia (“tube anemones”) remains one of the most enigmatic in terms of its phylogenetic position. We sequenced the mitochondrial genomes of two ceriantharians to see whether the complete organellar genome would provide more support for the phylogenetic placement of Ceriantharia. For both Isarachnanthus nocturnus and Pachycerianthus magnus, the mitochondrial gene sequences could not be assembled into a single circular genome. Instead, our analyses suggest that both species have mitochondrial genomes consisting of multiple linear fragments. Linear mitogenomes are characteristic of members of Medusozoa, one of the major lineages of Cnidaria, but are unreported for Anthozoa, which includes the Ceriantharia. The inferred number of fragments and variation in gene order between species is much greater within Ceriantharia than among the lineages of Medusozoa. We identify origins of replication for each of the five putative chromosomes of the Isarachnanthus nocturnus mitogenome and for each of the eight putative chromosomes of the Pachycerianthus magnus mitogenome. At 80,923 bp, I. nocturnus now holds the record for the largest animal mitochondrial genome reported to date. The novelty of the mitogenomic structure in Ceriantharia highlights the distinctiveness of this lineage but, because it appears to be both unique to and diverse within Ceriantharia, it is uninformative about the phylogenetic position of Ceriantharia relative to other Anthozoa. The presence of tRNAMet and tRNATrp in both ceriantharian mitogenomes supports a closer relationship between Ceriantharia and Hexacorallia than between Ceriantharia and any other cnidarian lineage, but phylogenetic analysis of the genes contained in the mitogenomes suggests that Ceriantharia is sister to a clade containing Octocorallia + Hexacorallia indicating a possible suppression of tRNATrp in Octocorallia.
Collapse
Affiliation(s)
- Sérgio N Stampar
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, UNESP - Universidade Estadual Paulista, Assis, SP, Brazil.
| | - Michael B Broe
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biology, Florida Southern College, Lakeland, FL, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mercer R Brugler
- Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, New York, 11201, USA.,Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Wu JH, Ju YM, Hsiao ST. The complete mitochondrial genome of Saccostrea Kegaki (Pterioida, Ostreidae). MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2018.1507640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jui-Hsien Wu
- Eastern Marine Biology Research Center, Fisheries Research Institute, Council of Agriculture, Taitung, Taiwan
| | - Yu-Min Ju
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Sheng-Tai Hsiao
- Marine Fisheries Division, Fisheries Research Institute, Keelung, Taiwan
| |
Collapse
|
3
|
Ju YM, Hsiao ST, Kuo FW, Wu JH. The complete mitochondrial genome of Montipora aequituberculata (Scleractinia, Acroporidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:62-63. [PMID: 33473718 PMCID: PMC7800442 DOI: 10.1080/23802359.2016.1186508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The complete mitogenome of the hexacorallia, Montipora aequituberculata has been amplified and sequenced. The mitogenome consists of 17,886 bp, with 13 protein-coding genes, 2 ribosomal RNA genes, 2 transfer RNA genes and a control region. It has been observed that ND5 gene is split into two parts by a large fragment of genes, which commonly presented in scleractinian coral. The overall base composition of the H-strand was A, 24.91%; G, 24.1%; C, 14.2%; and T, 36.8%, with a slight AT bias of 61.7%. The control region was 627 bp in length and located between 12S rRNA and COIII gene. Based on the neighbour-joining (NJ) tree, M. aequituberculata was grouped with M. cactus, Anacropora matthai and Acropora tenuis, and formed a clade of Acroporidae. In conclusion, the complete mitogenome of M. aequituberculata data may provide more informative for phylogenetic approach for corals phylogeny.
Collapse
Affiliation(s)
- Yu-Min Ju
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, Republic of China
| | - Sheng-Tai Hsiao
- Marine Fisheries Division, Fisheries Research Institute, Keelung, Taiwan, Republic of China
| | - Fu-Wen Kuo
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, Republic of China
| | - Jui-Hsien Wu
- Eastern Marine Biology Research Center, Fisheries Research Institute, Council of Agriculture, Taitung, Taiwan, Republic of China
| |
Collapse
|
4
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|