1
|
Kundu S, De Alwis PS, Kim AR, Lee SR, Kang HE, Go Y, Gietbong FZ, Wibowo A, Kim HW. Mitogenomic Characterization of Cameroonian Endemic Coptodon camerunensis (Cichliformes: Cichlidae) and Matrilineal Phylogeny of Old-World Cichlids. Genes (Basel) 2023; 14:1591. [PMID: 37628642 PMCID: PMC10454717 DOI: 10.3390/genes14081591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The mitogenomic evolution of old-world cichlids is still largely incomplete in Western Africa. In this present study, the complete mitogenome of the Cameroon endemic cichlid, Coptodon camerunensis, was determined by next-generation sequencing. The mitogenome was 16,557 bp long and encoded with 37 genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region). The C. camerunensis mitogenome is AT-biased (52.63%), as exhibited in its congener, Coptodon zillii (52.76% and 53.04%). The majority of PCGs start with an ATG initiation codon, except COI, which starts with a GTG codon and five PCGs and ends with the TAA termination codon and except seven PCGs with an incomplete termination codon. In C. camerunensis mitogenome, most tRNAs showed classical cloverleaf secondary structures, except tRNA-serine with a lack of DHU stem. Comparative analyses of the conserved blocks of two Coptodonini species control regions revealed that the CSB-II block was longer than other blocks and contained highly variable sites. Using 13 concatenated PCGs, the mitogenome-based Bayesian phylogeny easily distinguished all the examined old-world cichlids. Except for Oreochromini and Coptodinini tribe members, the majority of the taxa exhibited monophyletic clustering within their respective lineages. C. camerunensis clustered closely with Heterotilapia buttikoferi (tribe Heterotilapiini) and had paraphyletic clustering with its congener, C. zillii. The Oreochromini species also displayed paraphyletic grouping, and the genus Oreochromis showed a close relationship with Coptodinini and Heterotilapiini species. In addition, illustrating the known distribution patterns of old-world cichlids, the present study is congruent with the previous hypothesis and proclaims that prehistoric geological evolution plays a key role in the hydroclimate of the African continent during Mesozoic, which simultaneously disperses and/or colonizes cichlids in different ichthyological provinces and Rift Lake systems in Africa. The present study suggests that further mitogenomes of cichlid species are required, especially from western Africa, to understand their unique evolution and adaptation.
Collapse
Affiliation(s)
- Shantanu Kundu
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Piyumi S. De Alwis
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | | | - Arif Wibowo
- Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia;
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea; (S.K.); (P.S.D.A.)
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| |
Collapse
|
2
|
Fiteha YG, Rashed MA, Ali RAM, Magdy M. Characterization and phylogenetic analysis of the complete mitochondrial genome of Mango tilapia (Sarotherodon galilaeus: Cichlidae). Mol Biol Rep 2023; 50:3945-3950. [PMID: 36781609 PMCID: PMC10042889 DOI: 10.1007/s11033-023-08288-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Sarotherodon galilaeus (Linné, 1758) is a member of the family Cichlidae, which is considered the most important aquaculture freshwater species endemic to Africa and the Middle East. The genetics and molecular biology of this species are rare. This requires more comprehensive mitochondrial genomes-based phylogenetics to enhance understanding of the relationship and delineate this species. METHODS AND RESULTS Here, we assembled the complete mitogenome of S. galilaeus using Illumina high-throughput sequencing technology. The mango tilapia mitogenome was 16,631 bp in length with an AT composition of 53.4% and 46.4% GC content. It encodes 37 genes comprising two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and 13 protein-coding genes (PCGs) as well as the D-loop known as the control region. The phylogenetic tree was conducted to provide a relationship within the haplotilapiine lineage based on the maximum likelihood method, and the newly sequenced S. galilaeus was clustered with other Sarotherodon species. CONCLUSION Our results provide a new perception of the genetic basis of S. galilaeus species for further research on systematics, evolution, population genetics, and molecular ecology.
Collapse
Affiliation(s)
- Yosur G Fiteha
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - M A Rashed
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - R A M Ali
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - M Magdy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Fiteha YG, Rashed MA, Ali RA, Abd El-Moneim D, Alshanbari FA, Magdy M. Mitogenomic Features and Evolution of the Nile River Dominant Tilapiine Species (Perciformes: Cichlidae). BIOLOGY 2022; 12:biology12010040. [PMID: 36671733 PMCID: PMC9855864 DOI: 10.3390/biology12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
To better understand the diversity and evolution of cichlids, we sequenced, assembled, and annotated the complete mitochondrial genomes of three Nile tilapiine species (Coptodon zillii, Oreochromis niloticus, and Sarotherodon galilaeus) dominating the Nile River waters. Our results showed that the general mitogenomic features were conserved among the Nile tilapiine species. The genome length ranged from 16,436 to 16,631 bp and a total of 37 genes were identified (two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs), and 1 control region). The ND6 was the only CDS that presented a negative AT skew and a positive GC skew. The most extended repeat sequences were in the D-loop followed by the pseudogenes (trnSGCU). The ND5 showed relatively high substitution rates whereas ATP8 had the lowest substitution rate. The codon usage bias displayed a greater quantity of NNA and NNC at the third position and anti-bias against NNG. The phylogenetic relationship based on the complete mitogenomes and CDS was able to differentiate the three species as previously reported. This study provides new insight into the evolutionary connections between various subfamilies within cichlids while providing new molecular data that can be applied to discriminate between Nile tilapiine species and their populations.
Collapse
Affiliation(s)
- Yosur G. Fiteha
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
- Department of Zoology, Faculty of Women for Art, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed A. Rashed
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ramadan A. Ali
- Department of Zoology, Faculty of Women for Art, Science and Education, Ain Shams University, Cairo 11566, Egypt
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Fahad A. Alshanbari
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52266, Saudi Arabia
| | - Mahmoud Magdy
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
- Correspondence:
| |
Collapse
|
4
|
Jang‐Liaw N. A barcoding-based scat-analysis assessment of Eurasian otter Lutra lutra diet on Kinmen Island. Ecol Evol 2021; 11:8795-8813. [PMID: 34257929 PMCID: PMC8258194 DOI: 10.1002/ece3.7712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
While it is well known that Eurasian otters principally feed on fishes and crustaceans, their detailed diet taxonomies are not fully understood. This is partly due to their nocturnal behavior and the limited resolving power of traditional morphological identification from scat. A suitable, reliable molecular method for diet studies is therefore needed.I performed a series of Sanger-sequencing reactions, utilizing nine primer sets for Eurasian otter diet research. These are mainly based on the barcoding concept to determine the taxonomic composition of spraints. The primer sets target different types of animals, amplifying each separately. This procedure was used to detect the prey contents of 64 spraint samples collected from Kinmen Island. Through high-resolution gel electrophoresis and sequencing, it was evident that PCR products could be successfully amplified by the different primer sets and from spraint samples comprising multiple prey species.Extracted DNA from all spraint samples was PCR-amplified with 9 primer sets. In total, 16 prey types were identified across all 64 samples. Fourteen were identified at the species level.The aim of this study was to develop and apply a novel diet research method to Eurasian otters. Eight of the primers are universal primers designed for COI segments of different animal groups, and one primer set was designed specifically for tilapia groups. This method can be applied to study the diets of not only Kinmen Eurasian otter populations, but also other Eurasian otter populations and other small carnivorous animals.
Collapse
Affiliation(s)
- Nian‐Hong Jang‐Liaw
- Conservation Genetics LaboratoryConservation and Research CenterTaipei ZooTaipei CityTaiwan
| |
Collapse
|
5
|
Bbole I, Zhao JL, Tang SJ, Katongo C. Mitochondrial genome annotation and phylogenetic placement of Oreochromis andersonii and O. macrochir among the cichlids of southern Africa. PLoS One 2018; 13:e0203095. [PMID: 30481181 PMCID: PMC6258479 DOI: 10.1371/journal.pone.0203095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Genetic characterization of southern African cichlids has not received much attention. Here, we describe the mitogenome sequences and phylogenetic positioning of Oreochromis andersonii and O. macrochir among the African cichlids. The complete mitochondrial DNA sequences were determined for O. andersonii and O. macrochir, two important aquaculture and fisheries species endemic to southern Africa. The complete mitogenome sequence lengths were 16642 bp and 16644 bp for O. andersonii and O. macrochir respectively. The general structural organization follows that of other teleost species with 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a non-coding control region. Phylogenetic placement of the two species among other African cichlids was performed using Maximum Likelihood (ML) and Bayesian Markov-Chain-Monte-Carlo (MCMC). The consensus trees confirmed the relative positions of the two cichlid species with O. andersonii being very closely related to O. mossambicus and O. macrochir showing a close relation to both species. Among the 13 mitochondrial DNA protein coding genes ND6 may have evolved more rapidly and COIII was the most conserved. There are signs that ND6 may have been subjected to positive selection in order for these cichlid lineages to diversify and adapt to new environments. More work is needed to characterize the southern Africa cichlids as they are important species for capture fisheries, aquaculture development and understanding biogeographic history of African cichlids. Bio-conservation of some endangered cichlids is also essential due to the threat by invasive species.
Collapse
Affiliation(s)
- Ian Bbole
- Department of Fisheries, Mansa, Zambia
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jin-Liang Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN), Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shou-Jie Tang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Cyprian Katongo
- Biological Sciences Department, University of Zambia, Lusaka, Zambia
| |
Collapse
|
6
|
Moser FN, van Rijssel JC, Mwaiko S, Meier JI, Ngatunga B, Seehausen O. The onset of ecological diversification 50 years after colonization of a crater lake by haplochromine cichlid fishes. Proc Biol Sci 2018; 285:rspb.2018.0171. [PMID: 30111604 DOI: 10.1098/rspb.2018.0171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
Adaptive radiation research typically relies on the study of evolution in retrospective, leaving the predictive value of the concept hard to evaluate. Several radiations, including the cichlid fishes in the East African Great Lakes, have been studied extensively, yet no study has investigated the onset of the intraspecific processes of niche expansion and differentiation shortly after colonization of an adaptive zone by cichlids. Haplochromine cichlids of one of the two lineages that seeded the Lake Victoria radiation recently arrived in Lake Chala, a lake perfectly suited for within-lake cichlid speciation. Here, we infer the colonization and demographic history, quantify phenotypic, ecological and genomic diversity and diversification, and investigate the selection regime to ask if the population shows signs of diversification resembling the onset of adaptive radiation. We find that since their arrival in the lake, haplochromines have colonized a wide range of depth habitats associated with ecological and morphological expansion and the beginning of phenotypic differentiation and potentially nascent speciation, consistent with the very early onset of an adaptive radiation process. Moreover, we demonstrate evidence of rugged phenotypic fitness surfaces, indicating that current ecological selection may contribute to the phenotypic diversification.
Collapse
Affiliation(s)
- Florian N Moser
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Jacco C van Rijssel
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland.,Wageningen Marine Research, Wageningen University and Research, Ijmuiden, The Netherlands
| | - Salome Mwaiko
- Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Joana I Meier
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| | - Benjamin Ngatunga
- Tanzania Fisheries Research Institute, Box 9750, Dar Es Salaam, Tanzania
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland .,Department of Fish Ecology and Evolution, EAWAG, 6047 Kastanienbaum, Switzerland
| |
Collapse
|