1
|
Assembly and Annotation of Red Spruce ( Picea rubens) Chloroplast Genome, Identification of Simple Sequence Repeats, and Phylogenetic Analysis in Picea. Int J Mol Sci 2022; 23:ijms232315243. [PMID: 36499570 PMCID: PMC9739956 DOI: 10.3390/ijms232315243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
We have sequenced the chloroplast genome of red spruce (Picea rubens) for the first time using the single-end, short-reads (44 bp) Illumina sequences, assembled and functionally annotated it, and identified simple sequence repeats (SSRs). The contigs were assembled using SOAPdenovo2 following the retrieval of chloroplast genome sequences using the black spruce (Picea mariana) chloroplast genome as the reference. The assembled genome length was 122,115 bp (gaps included). Comparatively, the P. rubens chloroplast genome reported here may be considered a near-complete draft. Global genome alignment and phylogenetic analysis based on the whole chloroplast genome sequences of Picea rubens and 10 other Picea species revealed high sequence synteny and conservation among 11 Picea species and phylogenetic relationships consistent with their known classical interrelationships and published molecular phylogeny. The P. rubens chloroplast genome sequence showed the highest similarity with that of P. mariana and the lowest with that of P. sitchensis. We have annotated 107 genes including 69 protein-coding genes, 28 tRNAs, 4 rRNAs, few pseudogenes, identified 42 SSRs, and successfully designed primers for 26 SSRs. Mononucleotide A/T repeats were the most common followed by dinucleotide AT repeats. A similar pattern of microsatellite repeats occurrence was found in the chloroplast genomes of 11 Picea species.
Collapse
|
2
|
Ouyang F, Hu J, Wang J, Ling J, Wang Z, Wang N, Ma J, Zhang H, Mao JF, Wang J. Complete plastome sequences of Picea asperata and P. crassifolia and comparative analyses with P. abies and P. morrisonicola. Genome 2019; 62:317-328. [PMID: 30998854 DOI: 10.1139/gen-2018-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Picea asperata and P. crassifolia have sympatric ranges and are closely related, but the differences between these species at the plastome level are unknown. To better understand the patterns of variation among Picea plastomes, the complete plastomes of P. asperata and P. crassifolia were sequenced. Then, the plastomes were compared with the complete plastomes of P. abies and P. morrisonicola, which are closely and distantly related to the focal species, respectively. We also used these sequences to construct phylogenetic trees to determine the relationships among and between the four species as well as additional taxa from Pinaceae and other gymnosperms. Analysis of our sequencing data allowed us to identify 438 single nucleotide polymorphism (SNPs) point mutation events, 95 indel events, four inversion events, and seven highly variable regions, including six gene spacer regions (psbJ-petA, trnT-psaM, trnS-trnD, trnL-rps4, psaC-ccsA, and rps7-trnL) and one gene (ycf1). The highly variable regions are appropriate targets for future use in the phylogenetic reconstructions of closely related, sympatric species of Picea as well as Pinaceae in general.
Collapse
Affiliation(s)
- Fangqun Ouyang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jiwen Hu
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Junchen Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China.,b Northwest Agriculture & Forestry University, Xi'an, P.R. China
| | - Juanjuan Ling
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Zhi Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Nan Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Jianwei Ma
- c Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Gansu, P.R. China
| | - Hanguo Zhang
- d State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, P.R. China
| | - Jian-Feng Mao
- e National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plant of Ministry of Education, College of Biological Science and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Junhui Wang
- a State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
3
|
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae). Mol Biol Evol 2017; 34:1689-1701. [PMID: 28383641 PMCID: PMC5455968 DOI: 10.1093/molbev/msx111] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Stacey Lee Thompson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden.,Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| |
Collapse
|