1
|
Weishaupt H, Čančer M, Rosén G, Holmberg KO, Häggqvist S, Bunikis I, Jiang Y, Sreedharan S, Gyllensten U, Becher OJ, Uhrbom L, Ameur A, Swartling FJ. Novel cancer gene discovery using a forward genetic screen in RCAS-PDGFB-driven gliomas. Neuro Oncol 2022; 25:97-107. [PMID: 35738865 PMCID: PMC9825320 DOI: 10.1093/neuonc/noac158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.
Collapse
Affiliation(s)
| | | | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Susana Häggqvist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yiwen Jiang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Smitha Sreedharan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Oren J Becher
- Department of Pediatrics and Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA,Department of Pediatrics and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Corresponding Author: Fredrik J. Swartling, PhD, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjoldsv. 20, SE-751 85 Uppsala, Sweden ()
| |
Collapse
|
2
|
CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A 2019; 117:1129-1138. [PMID: 31879345 DOI: 10.1073/pnas.1910856117] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.
Collapse
|
3
|
Alinezhad A, Jafari F. Novel management of glioma by molecular therapies, a review article. Eur J Transl Myol 2019; 29:8209. [PMID: 31579472 PMCID: PMC6767997 DOI: 10.4081/ejtm.2019.8209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
Abstract
The most frequent type of brain tumors is Glioma which commonly appears initially in the neuroglia in the central nervous system. They grow steadily and generally do not outspread to neighboring tissue of the brain. By applying dominant remedial regimens, the patients would have negligible survival rates. Despite the achieved advances in conventional glioma therapy, it proved that a proper medication for glioma is not easily reachable. The glioma penetration nature and accumulate resistance considerably limit the remedial options. Superior explanation of the glioma complex pathobiology and characterization of biological proteogenomic may finally open new approaches for the outlining of extra artificial and impressive combination regimens. This aim could be achieved by exclusively outfitting advanced techniques of neuroimaging, terminating synthesis of DNA via genes that activated via prodrugs, experimental technique of gene therapy via conciliating genes of gliomagenesis, targeting miRNA-mRNA activity of oncogenic, applying stem cell therapy for combining inhibitors of Hedgehog-Gli, adaptive transmission of chimeric immunoreceptors T cells, incorporate inhibitors of regulators of the immune system with conventional remedial modalities and additionally using tumor cell lysates as sources of antigen for efficient evacuation of particular stem cells of tumor via cytotoxic T lymphocytes. Consequently, in this study the authors trying to survey the latest progressions related to the molecular procedures connected with the formation of glial tumors in addition to the radiation, surgery and chemotherapy limitations. Additionally, the novel strategies of molecular remedies and their procedure for the prosperous treatment of glioma will be discussed.
Collapse
Affiliation(s)
- Amin Alinezhad
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jafari
- Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| |
Collapse
|
4
|
Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin 2017; 38:591-613. [PMID: 28317871 DOI: 10.1038/aps.2016.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.
Collapse
|
5
|
Kamali M, Dinarvand R, Maleki H, Arzani H, Mahdaviani P, Nekounam H, Adabi M, Khosravani M. Preparation of imatinib base loaded human serum albumin for application in the treatment of glioblastoma. RSC Adv 2015. [DOI: 10.1039/c5ra08501b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IMTb loaded HSA nanoparticles were prepared using a desolvation method at different pH and the encapsulation efficiency and drug loading capacity were tested.
Collapse
Affiliation(s)
- Morteza Kamali
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hassan Maleki
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hossein Arzani
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Parvin Mahdaviani
- Nanomedicine and Biomaterial Lab
- Department of Pharmaceutics
- Faculty of Pharmacy
- Tehran University of Medical Sciences
- Tehran
| | - Houra Nekounam
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
6
|
Abstract
The platelet-derived growth factor (PDGF) family of mitogens exerts vital functions during embryonal development, e.g. in the central nervous system, where PDGF drives the proliferation of oligodendrocyte precursors. PDGF and PDGF receptors are co-expressed in human glioblastoma (GBM). Whether an aberrant activation of the PDGF receptor pathway is a driving force in glioma development has remained an open question. In experimental animals, overexpression of PDGF has convincingly been shown to induce tumors, both in wild-type animals (marmoset, rat, mouse) and in mice with targeted deletions of suppressor genes, e.g. Tp53 or Ink4A. Targeting the PDGF receptor in tumor-bearing mice leads to growth inhibition and reversion of the transformed phenotype. Findings of PDGF receptor amplification or mutations in human GBM are strong indicators of a causative role of the PDGF receptor pathway. However, clinical trials using PDGF receptor antagonists have been disappointing. In conclusion, a PDGF receptor profile may be a biomarker for a subgroup of GBM originating from a PDGF receptor-responsive cell. Although compelling experimental and clinical evidence supports the notion that the PDGF receptor pathway is a driver in GBM, formal proof is still missing.
Collapse
Affiliation(s)
- Bengt Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Abstract
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.
Collapse
Affiliation(s)
- Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Sanna-Maria Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - William A. Weiss
- University of California, Depts. of Neurology, Pathology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, San Francisco CA 94158, USA
| |
Collapse
|
8
|
Abstract
Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor therapies.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Uppsala University, Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|
9
|
Mpindi JP, Sara H, Haapa-Paananen S, Kilpinen S, Pisto T, Bucher E, Ojala K, Iljin K, Vainio P, Björkman M, Gupta S, Kohonen P, Nees M, Kallioniemi O. GTI: a novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets. PLoS One 2011; 6:e17259. [PMID: 21365010 PMCID: PMC3041823 DOI: 10.1371/journal.pone.0017259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/27/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type ('outlier genes'), a hallmark of potential oncogenes. METHODOLOGY A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. CONCLUSIONS/SIGNIFICANCE Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).
Collapse
Affiliation(s)
- John Patrick Mpindi
- FIMM, Institute of Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ranza E, Mazzini G, Facoetti A, Nano R. In-vitro effects of the tyrosine kinase inhibitor imatinib on glioblastoma cell proliferation. J Neurooncol 2009; 96:349-57. [PMID: 19629393 DOI: 10.1007/s11060-009-9975-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/06/2009] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBL) is the most malignant brain tumour in adults, causing the death of most patients within 9-12 months of diagnosis. Treatment is based on a combination of surgery, radiation therapy, and chemotherapy. With these treatment modalities, however, responses are extremely poor, so identification of novel treatment strategies is highly warranted. Platelet-derived growth factors (PDGF) and their receptors are commonly coexpressed in GBL, suggesting that stimulation of autocrine PDGF receptors may contribute to their growth. Interest in these receptors as drug target for glioblastoma treatment has increased with the clinical availability of the PDGFR kinase inhibitor antagonist imatinib mesylate (STI571). In this study, T98G and A172 human GBL cell lines were analysed for their sensitivity to treatment with imatinib. In particular, we focussed our attention on analysis of DNA distribution by flow cytometry at different times of incubation with different imatinib concentrations (1-30 microM: ). Our results show that imatinib induces growth arrest in T98G and A172 cells in the G(0)/G(1) phase of the cell cycle, at all the concentrations tested, as early as 24 h after treatment. However we have also seen, by means of annexin V staining, that at 20 and 30 microM: concentrations, in concomitance with a significant growth arrest in the G(0)/G(1) phase, there is an increase of apoptotic cells 48 h after treatment, suggesting that imatinib at low concentrations (1-10 microM: ) could act as a cytostatic agent whereas at high concentrations (20, 30 microM: ) it mainly behaves as a cytotoxic agent.
Collapse
Affiliation(s)
- E Ranza
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy.
| | | | | | | |
Collapse
|
11
|
Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene 2009; 28:3121-31. [PMID: 19543319 DOI: 10.1038/onc.2009.168] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Earlier we used a glioma model to identify loci in the mouse genome, which were repeatedly targeted by platelet-derived growth factor (PDGF)-containing Moloney murine leukemia viruses. The gene Prkg2, encoding cyclic guanosine monophosphate (cGMP)-dependent protein kinase II, cGKII, was tagged by retroviral insertions in two brain tumors. The insertions were both situated upstream of the kinase domain and suggested creating a truncated form of the cGKII protein. We transfected different human glioma cell lines with Prkg2 and found an overall reduction in colony formation and cell proliferation compared with controls transfected with truncated Prkg2 (lacking the kinase domain) or empty vector. All glioma cells transfected with the cGKII phosphorylate vasodilator-stimulated phosphoprotein, VASP, after cGMP analog treatment. Glioma cell lines positive for the Sox9 transcription factor showed reduced Sox9 expression when Prkg2 was stably transfected. When cGKII was activated by cGMP analog treatment, Sox9 was phosphorylated, Sox9 protein expression was suppressed and the glioma cell lines displayed loss of cell adhesion, inhibition of Akt phosphorylation and G1 arrest. Sox9 repression by siRNA was similarly shown to reduce glioma cell proliferation. Expression analysis of stem and glial lineage cell markers also suggests that cGKII induces differentiation of glioma cell lines. These findings describe an anti-proliferative role of cGKII in human glioma biology and would further explain the retroviral tagging of the cGKII gene during brain tumor formation in PDGF-induced tumors.
Collapse
|
12
|
Tumor progression and oncogene addiction in a PDGF-B-induced model of gliomagenesis. Neoplasia 2009; 10:1373-82, following 1382. [PMID: 19048116 DOI: 10.1593/neo.08814] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 01/23/2023] Open
Abstract
Platelet-derived growth factor B (PDGF-B) overexpression induces gliomas of different grades from murine embryonic neural progenitors. For the first time, we formally demonstrated that PDGF-B-induced neoplasms undergo progression from nontumorigenic low-grade tumors toward highly malignant forms. This result, showing that PDGF-B signaling alone is insufficient to confer malignancy to cells, entails the requirement for further molecular lesions in this process. Our results indicate that one of these lesions is represented by the down-regulation of the oncosuppressor Btg2. By in vivo transplantation assays, we further demonstrate that fully progressed tumors are PDGF-B-addicted because their tumor-propagating ability is lost when the PDGF-B transgene is silenced, whereas it is promptly reacquired after its reactivation. We provide evidence that this oncogene addiction is not caused by the need for PDGF-B as a mitogen but, rather, to the fact that PDGF-B is required to overcome cell-cell contact inhibition and to confer in vivo infiltrating potential on tumor cells.
Collapse
|