1
|
Düzel E, Costagli M, Donatelli G, Speck O, Cosottini M. Studying Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis with 7-T magnetic resonance. Eur Radiol Exp 2021; 5:36. [PMID: 34435242 PMCID: PMC8387546 DOI: 10.1186/s41747-021-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers the opportunity to improve tissue contrast and depict features that were previously inaccessible. These potential advantages come, however, at a cost: in the majority of UHF-MR clinical protocols, potential drawbacks may include signal inhomogeneity, geometrical distortions, artifacts introduced by patient respiration, cardiac cycle, and motion. This article reviews the 7 T MR literature reporting the recent studies on the most widespread neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Emrah Düzel
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,University College London, London, UK.
| | - Mauro Costagli
- IRCCS Stella Maris, Pisa, Italy.,University of Genoa, Genova, Italy
| | - Graziella Donatelli
- Fondazione Imago 7, Pisa, Italy.,Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Oliver Speck
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Mirco Cosottini
- Azienda Ospedaliero Universitaria Pisana, Pisa, Italy.,University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Barry RL, Babu S, Anteraper SA, Triantafyllou C, Keil B, Rowe OE, Rangaprakash D, Paganoni S, Lawson R, Dheel C, Cernasov PM, Rosen BR, Ratai EM, Atassi N. Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study. NEUROIMAGE-CLINICAL 2021; 30:102648. [PMID: 33872993 PMCID: PMC8060594 DOI: 10.1016/j.nicl.2021.102648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Participants with ALS exhibited impaired function between the cortex and cerebellum. The cerebellum is associated with complex motor and cognitive processing tasks. These findings add to the growing number of ALS reports implicating the cerebellum.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the central nervous system that results in a progressive loss of motor function and ultimately death. It is critical, yet also challenging, to develop non-invasive biomarkers to identify, localize, measure and/or track biological mechanisms implicated in ALS. Such biomarkers may also provide clues to identify potential molecular targets for future therapeutic trials. Herein we report on a pilot study involving twelve participants with ALS and nine age-matched healthy controls who underwent high-resolution resting state functional magnetic resonance imaging at an ultra-high field of 7 Tesla. A group-level whole-brain analysis revealed a disruption in long-range functional connectivity between the superior sensorimotor cortex (in the precentral gyrus) and bilateral cerebellar lobule VI. Post hoc analyses using atlas-derived left and right cerebellar lobule VI revealed decreased functional connectivity in ALS participants that predominantly mapped to bilateral postcentral and precentral gyri. Cerebellar lobule VI is a transition zone between anterior motor networks and posterior non-motor networks in the cerebellum, and is associated with a wide range of key functions including complex motor and cognitive processing tasks. Our observation of the involvement of cerebellar lobule VI adds to the growing number of studies implicating the cerebellum in ALS. Future avenues of scientific investigation should consider how high-resolution imaging at 7T may be leveraged to visualize differences in functional connectivity disturbances in various genotypes and phenotypes of ALS along the ALS-frontotemporal dementia spectrum.
Collapse
Affiliation(s)
- Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA.
| | - Suma Babu
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Sheeba Arnold Anteraper
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Triantafyllou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Siemens Healthineers, Erlangen, Germany
| | - Boris Keil
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Mittelhessen University of Applied Sciences, Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Olivia E Rowe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - D Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Spaulding Rehabilitation Hospital, Charlestown, MA, USA; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Robert Lawson
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Christina Dheel
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Paul M Cernasov
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | - Nazem Atassi
- Sean M. Healey & AMG Center for ALS at Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Sanofi Genzyme, Cambridge, MA, USA
| |
Collapse
|
3
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
4
|
Bao Y, Yang L, Chen Y, Zhang B, Li H, Tang W, Geng D, Li Y. Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis. Eur Radiol 2018; 28:4940-4948. [PMID: 29948064 DOI: 10.1007/s00330-018-5506-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To explore the sensitivity of potential DTI-based biomarkers in detecting microstructural changes for whole-brain white matter in early stage amyotrophic lateral sclerosis (ALS), analyze the relationship between the DTI indices and disease status, and further clarify potential brain regions for disease monitoring and clinical assessment. METHODS Thirty-three non-demented ALS patients and 32 age- and gender-matched subjects participated in this study. DTI data were acquired via 3.0T MRI scanner. Maps of diffusion-related indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were obtained. Tract-based spatial statistics (TBSS) were used to investigate whole-brain white matter changes of each index. Correlation analyses between both brain-wide and volume-of-interest (VOI)-wide white matter alterations and clinical factors including ALSFRS-R scores, disease duration, and progression rate were performed. RESULTS Compared to healthy subjects, ALS patients showed significantly increased RD, MD and reduced FA, mainly along the corticospinal tract (CST) and the body of corpus callosum (CC). Increases in RD were broader than decreases in FA, in CST of both hemispheres. Meanwhile, involvement of several extra-motor regions was also revealed by RD. Significant positive correlation between ALSFRS-R scores and FA, negative correlation between ALSFRS-R and RD were found in left CST. CONCLUSIONS RD may be the most sensitive biomarker for the detection of early demyelination of white matter. Both RD and FA may serve as objective biomarkers for disease severity assessment. CST may be the most affected brain region in non-demented ALS. KEY POINTS • Changes in RD were broader than those in FA in bilateral CST. • Involvement of extra-motor regions was uncovered by RD. • FA and RD in CST were related to ALSFRS-R scores.
Collapse
Affiliation(s)
- Yifang Bao
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Biyun Zhang
- Department of Radiotherapy, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Present and Future of Ultra-High Field MRI in Neurodegenerative Disorders. Curr Neurol Neurosci Rep 2018; 18:31. [DOI: 10.1007/s11910-018-0841-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Dharmadasa T, Huynh W, Tsugawa J, Shimatani Y, Ma Y, Kiernan MC. Implications of structural and functional brain changes in amyotrophic lateral sclerosis. Expert Rev Neurother 2018; 18:407-419. [PMID: 29667443 DOI: 10.1080/14737175.2018.1464912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes progressive muscle weakness and disability, eventually leading to death. Heterogeneity of disease has become a major barrier to understanding key clinical questions such as prognosis and disease spread, and has disadvantaged clinical trials in search of therapeutic intervention. Patterns of disease have been explored through recent advances in neuroimaging, elucidating structural, molecular and functional changes. Unique brain signatures have emerged that have lent a greater understanding of critical disease mechanisms, offering opportunities to improve diagnosis, guide prognosis, and establish candidate biomarkers to direct future therapeutic strategies. Areas covered: This review explores patterns of cortical and subcortical change in ALS through advanced neuroimaging techniques and discusses the implications of these findings. Expert commentary: Cortical and subcortical signatures and patterns of atrophy are now consistently recognised, providing important pathophysiological insight into this heterogenous disease. The spread of cortical change, particularly involving frontotemporal networks, correlates with cognitive impairment and poorer prognosis. Cortical differences are also evident between ALS phenotypes and genotypes, which may partly explain the heterogeneity of prognosis. Ultimately, multimodal approaches with larger cohorts will be needed to provide sensitive biomarkers of disease spread at the level of the individual patient.
Collapse
Affiliation(s)
| | - William Huynh
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Jun Tsugawa
- c Department of Neurology , Fukuoka University Hospital , Fukuoka city , Japan
| | - Yoshimitsu Shimatani
- d Department of Neurology , Tokushima Prefectural Hospital , Tokushima city , Japan
| | - Yan Ma
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Matthew C Kiernan
- a Brain and Mind Centre , The University of Sydney , Sydney , Australia.,b Department of Neurology , Royal Prince Alfred Hospital , Sydney , Australia
| |
Collapse
|
7
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
8
|
Wang Q, Guo L, Thompson PM, Jack CR, Dodge H, Zhan L, Zhou J. The Added Value of Diffusion-Weighted MRI-Derived Structural Connectome in Evaluating Mild Cognitive Impairment: A Multi-Cohort Validation1. J Alzheimers Dis 2018; 64:149-169. [PMID: 29865049 PMCID: PMC6272125 DOI: 10.3233/jad-171048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
T1-weighted MRI has been extensively used to extract imaging biomarkers and build classification models for differentiating Alzheimer's disease (AD) patients from healthy controls, but only recently have brain connectome networks derived from diffusion-weighted MRI been used to model AD progression and various stages of disease such as mild cognitive impairment (MCI). MCI, as a possible prodromal stage of AD, has gained intense interest recently, since it may be used to assess risk factors for AD. Little work has been done to combine information from both white matter and gray matter, and it is unknown how much classification power the diffusion-weighted MRI-derived structural connectome could provide beyond information available from T1-weighted MRI. In this paper, we focused on investigating whether diffusion-weighted MRI-derived structural connectome can improve differentiating healthy controls subjects from those with MCI. Specifically, we proposed a novel feature-ranking method to build classification models using the most highly ranked feature variables to classify MCI with healthy controls. We verified our method on two independent cohorts including the second stage of Alzheimer's Disease Neuroimaging Initiative (ADNI2) database and the National Alzheimer's Coordinating Center (NACC) database. Our results indicated that 1) diffusion-weighted MRI-derived structural connectome can complement T1-weighted MRI in the classification task; 2) the feature-rank method is effective because of the identified consistent T1-weighted MRI and network feature variables on ADNI2 and NACC. Furthermore, by comparing the top-ranked feature variables from ADNI2, NACC, and combined dataset, we concluded that cross-validation using independent cohorts is necessary and highly recommended.
Collapse
Affiliation(s)
- Qi Wang
- Computer Science and Engineering, Michigan State University, East Lansing, MI
| | - Lei Guo
- Mathematics, Statistics & Computer Science Department, University of Wisconsin-Stout, Menomonie, WI
| | - Paul M. Thompson
- Imaging Genetics Center, University of Southern California, Marina del Rey, CA
| | | | - Hiroko Dodge
- Michigan Alzheimer's Disease Center and Department of Neurology, University of Michigan, Ann Arbor, MI
- Layton Aging and Alzheimer's Disease Center and Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Liang Zhan
- Computer Engineering Program, University of Wisconsin-Stout, Menomonie, WI
| | - Jiayu Zhou
- Computer Science and Engineering, Michigan State University, East Lansing, MI
| | | |
Collapse
|
9
|
Querin G, El Mendili MM, Lenglet T, Delphine S, Marchand-Pauvert V, Benali H, Pradat PF. Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis. Eur J Neurol 2017; 24:1040-1046. [PMID: 28586096 DOI: 10.1111/ene.13329] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Assessing survival is a critical issue in patients with amyotrophic lateral sclerosis (ALS). Neuroimaging seems to be promising in the assessment of disease severity and several studies also suggest a strong relationship between spinal cord (SC) atrophy described by magnetic resonance imaging (MRI) and disease progression. The aim of the study was to determine the predictive added value of multimodal SC MRI on survival. METHODS Forty-nine ALS patients were recruited and clinical data were collected. Patients were scored on the Revised ALS Functional Rating Scale and manual muscle testing. They were followed longitudinally to assess survival. The cervical SC was imaged using the 3 T MRI system. Cord volume and cross-sectional area (CSA) at each vertebral level were computed. Diffusion tensor imaging metrics were measured. Imaging metrics and clinical variables were used as inputs for a multivariate Cox regression survival model. RESULTS On building a multivariate Cox regression model with clinical and MRI parameters, fractional anisotropy, magnetization transfer ratio and CSA at C2-C3, C4-C5, C5-C6 and C6-C7 vertebral levels were significant. Moreover, the hazard ratio calculated for CSA at the C3-C4 and C5-C6 levels indicated an increased risk for patients with SC atrophy (respectively 0.66 and 0.68). In our cohort, MRI parameters seem to be more predictive than clinical variables, which had a hazard ratio very close to 1. CONCLUSIONS It is suggested that multimodal SC MRI could be a useful tool in survival prediction especially if used at the beginning of the disease and when combined with clinical variables. To validate it as a biomarker, confirmation of the results in bigger independent cohorts of patients is warranted.
Collapse
Affiliation(s)
- G Querin
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - M M El Mendili
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Department of Neurology, Icahn School of Medicine, Mount Sinai, NY, USA
| | - T Lenglet
- Département de Neurophysiologie, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - S Delphine
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Institut des Neurosciences Translationnelles, Institut Du Cerveau Et De La Moelle Épinière - IHU-A-ICM, Paris, France
| | - V Marchand-Pauvert
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - H Benali
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - P-F Pradat
- Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Département des Maladies du Système Nerveux, Centre référent SLA, APHP, Hôpital Pitié-Salpêtrière Paris, Paris, France
| |
Collapse
|
10
|
Multimodal assessment of white matter tracts in amyotrophic lateral sclerosis. PLoS One 2017; 12:e0178371. [PMID: 28575122 PMCID: PMC5456080 DOI: 10.1371/journal.pone.0178371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Several quantitative magnetic resonance imaging (MRI) techniques have been proposed to investigate microstructural tissue changes in amyotrophic lateral sclerosis (ALS) including diffusion tensor imaging (DTI), magnetization transfer imaging, and R2* mapping. Here, in this study, we compared these techniques with regard to their capability for detecting ALS related white matter (WM) changes in the brain and their association with clinical findings. We examined 27 ALS patients and 35 age-matched healthy controls. MRI was performed at 3T, after which we analyzed the diffusion properties, the magnetization transfer ratio (MTR), and the effective transversal relaxation rate R2* in 18 WM tracts that were obtained by a fully automated segmentation technique. ALS patients, especially with a bulbar onset, showed a bilateral increase in radial and mean diffusivity, as well as a reduction in fractional anisotropy of the corticospinal tract (CST), and diffusion changes in the parietal and temporal superior longitudinal fasciculus. A reduction of the MTR was found in both CSTs and an R2* reduction was seen only in the left CST. Tract-specific diffusion properties were not related to clinical status in a cross-sectional manner but demonstrated some association with disease progression over three subsequent months. DTI reveals more widespread WM tissue changes than MTR and R2*. These changes are not restricted to the CST, but affect also other WM tracts (especially in patients with bulbar onset), and are associated with the short term course of the disease.
Collapse
|
11
|
Menke RAL, Agosta F, Grosskreutz J, Filippi M, Turner MR. Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2017; 14:11-23. [PMID: 27752938 PMCID: PMC5233627 DOI: 10.1007/s13311-016-0484-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative, clinically heterogeneous syndrome pathologically overlapping with frontotemporal dementia. To date, therapeutic trials in animal models have not been able to predict treatment response in humans, and the revised ALS Functional Rating Scale, which is based on coarse disability measures, remains the gold-standard measure of disease progression. Advances in neuroimaging have enabled mapping of functional, structural, and molecular aspects of ALS pathology, and these objective measures may be uniquely sensitive to the detection of propagation of pathology in vivo. Abnormalities are detectable before clinical symptoms develop, offering the potential for neuroprotective intervention in familial cases. Although promising neuroimaging biomarker candidates for diagnosis, prognosis, and disease progression have emerged, these have been from the study of necessarily select patient cohorts identified in specialized referral centers. Further multicenter research is now needed to establish their validity as therapeutic outcome measures.
Collapse
Affiliation(s)
- Ricarda A L Menke
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Julian Grosskreutz
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Lista S, Molinuevo JL, Cavedo E, Rami L, Amouyel P, Teipel SJ, Garaci F, Toschi N, Habert MO, Blennow K, Zetterberg H, O'Bryant SE, Johnson L, Galluzzi S, Bokde ALW, Broich K, Herholz K, Bakardjian H, Dubois B, Jessen F, Carrillo MC, Aisen PS, Hampel H. Evolving Evidence for the Value of Neuroimaging Methods and Biological Markers in Subjects Categorized with Subjective Cognitive Decline. J Alzheimers Dis 2016; 48 Suppl 1:S171-91. [PMID: 26402088 DOI: 10.3233/jad-150202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is evolving evidence that individuals categorized with subjective cognitive decline (SCD) are potentially at higher risk for developing objective and progressive cognitive impairment compared to cognitively healthy individuals without apparent subjective complaints. Interestingly, SCD, during advancing preclinical Alzheimer's disease (AD), may denote very early, subtle cognitive decline that cannot be identified using established standardized tests of cognitive performance. The substantial heterogeneity of existing SCD-related research data has led the Subjective Cognitive Decline Initiative (SCD-I) to accomplish an international consensus on the definition of a conceptual research framework on SCD in preclinical AD. In the area of biological markers, the cerebrospinal fluid signature of AD has been reported to be more prevalent in subjects with SCD compared to healthy controls; moreover, there is a pronounced atrophy, as demonstrated by magnetic resonance imaging, and an increased hypometabolism, as revealed by positron emission tomography, in characteristic brain regions affected by AD. In addition, SCD individuals carrying an apolipoprotein ɛ4 allele are more likely to display AD-phenotypic alterations. The urgent requirement to detect and diagnose AD as early as possible has led to the critical examination of the diagnostic power of biological markers, neurophysiology, and neuroimaging methods for AD-related risk and clinical progression in individuals defined with SCD. Observational studies on the predictive value of SCD for developing AD may potentially be of practical value, and an evidence-based, validated, qualified, and fully operationalized concept may inform clinical diagnostic practice and guide earlier designs in future therapy trials.
Collapse
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jose L Molinuevo
- Alzheimers Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Enrica Cavedo
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France.,CATI Multicenter Neuroimaging Platform, France.,Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Istituto Centro "San Giovanni diDio-Fatebenefratelli", Brescia, Italy
| | - Lorena Rami
- Alzheimers Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Philippe Amouyel
- Inserm, U1157, Lille, France.,Université de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany & German Center forNeurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Francesco Garaci
- Department of Diagnostic Imaging, Molecular Imaging, Interventional Radiology and Radiotherapy, University Hospital of "Tor Vergata", Rome, Italy.,Department of Biomedicine and Prevention University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Marie-Odile Habert
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, Paris, France.,AP-HP, Pitié-Salpêtrière Hospital, Nuclear Medicine Department, Paris, France
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,The Torsten Söderberg Professorship in Medicine at the Royal Swedish Academy of Sciences
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Sid E O'Bryant
- Institute for Aging and Alzheimer's Disease Research & Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute for Aging and Alzheimer's Disease Research & Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Samantha Galluzzi
- Laboratory of Epidemiology, Neuroimaging and Telemedicine, IRCCS Istituto Centro "San Giovanni diDio-Fatebenefratelli", Brescia, Italy
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Karl Broich
- President, Federal Institute of Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Karl Herholz
- Institute of Brain, Behaviours and Mental Health, University of Manchester, Manchester, UK
| | - Hovagim Bakardjian
- IM2A - Institute of Memory and Alzheimer's Disease, IHU-A-ICM - Paris Institute of Translational Neurosciences, Pitié-Salpêtrière University Hospital, Paris, France
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Frank Jessen
- Department of Psychiatry, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maria C Carrillo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA∥
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), UMR S 1127, Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
13
|
Abstract
Amyotrophic lateral sclerosis (ALS) is now recognised to be a heterogeneous neurodegenerative syndrome of the motor system and its frontotemporal cortical connections. The development and application of structural and functional imaging over the last three decades, in particular magnetic resonance imaging (MRI), has allowed traditional post mortem histopathological and emerging molecular findings in ALS to be placed in a clinical context. Cerebral grey and white matter structural MRI changes are increasingly being understood in terms of brain connectivity, providing insights into the advancing degenerative process and producing candidate biomarkers. Such markers may refine the prognostic stratification of patients and the diagnostic pathway, as well as providing an objective assessment of changes in disease activity in response to future therapeutic agents. Studies are being extended to the spinal cord, and the application of neuroimaging to unaffected carriers of highly penetrant genetic mutations linked to the development of ALS offers a unique window to the pre-symptomatic landscape.
Collapse
Affiliation(s)
- Martin R. Turner
- />Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- />John Radcliffe Hospital, West Wing Level 3, Oxford, OX3 9DU UK
| | - Esther Verstraete
- />University of Utrecht, Utrecht, Netherlands
- />University Medical Center, Heidelberglaan 100, Utrecht, Netherlands
| |
Collapse
|
14
|
Stoppel CM, Vielhaber S, Eckart C, Machts J, Kaufmann J, Heinze HJ, Kollewe K, Petri S, Dengler R, Hopf JM, Schoenfeld MA. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. NEUROIMAGE-CLINICAL 2014; 5:277-90. [PMID: 25161894 PMCID: PMC4141983 DOI: 10.1016/j.nicl.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/03/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that in amyotrophic lateral sclerosis (ALS) multiple motor and extra-motor regions display structural and functional alterations. However, their temporal dynamics during disease-progression are unknown. To address this question we employed a longitudinal design assessing motor- and novelty-related brain activity in two fMRI sessions separated by a 3-month interval. In each session, patients and controls executed a Go/NoGo-task, in which additional presentation of novel stimuli served to elicit hippocampal activity. We observed a decline in the patients' movement-related activity during the 3-month interval. Importantly, in comparison to controls, the patients' motor activations were higher during the initial measurement. Thus, the relative decrease seems to reflect a breakdown of compensatory mechanisms due to progressive neural loss within the motor-system. In contrast, the patients' novelty-evoked hippocampal activity increased across 3 months, most likely reflecting the build-up of compensatory processes typically observed at the beginning of lesions. Consistent with a stage-dependent emergence of hippocampal and motor-system lesions, we observed a positive correlation between the ALSFRS-R or MRC-Megascores and the decline in motor activity, but a negative one with the hippocampal activation-increase. Finally, to determine whether the observed functional changes co-occur with structural alterations, we performed voxel-based volumetric analyses on magnetization transfer images in a separate patient cohort studied cross-sectionally at another scanning site. Therein, we observed a close overlap between the structural changes in this cohort, and the functional alterations in the other. Thus, our results provide important insights into the temporal dynamics of functional alterations during disease-progression, and provide support for an anatomical relationship between functional and structural cerebral changes in ALS.
Collapse
Affiliation(s)
- Christian Michael Stoppel
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Corresponding author.
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- DZNE — German Centre for Neurodegenerative Diseases, Leipziger Str. 44, Magdeburg 39120, Germany
- Corresponding author.
| | - Cindy Eckart
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Institute for Systemic Neurosciences, University Clinic, Martinistr. 52, Hamburg 20246, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
| | - Katja Kollewe
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Susanne Petri
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Reinhard Dengler
- Department of Neurology, Medical School Hannover, Carl-Neuberg-str. 1, Hannover 30625, Germany
| | - Jens-Max Hopf
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto-von-Guericke-University, Leipziger Str. 44, Magdeburg 39120, Germany
- Leibniz-Institute for Neurobiology, Brennecke Str. 6, Magdeburg 39118, Germany
- Kliniken Schmieder, Zum Tafelholz 8, Allensbach 78476, Germany
| |
Collapse
|
15
|
Abstract
Schizophrenia--a severe psychiatric condition characterized by hallucinations, delusions, loss of initiative and cognitive function--is hypothesized to result from abnormal anatomical neural connectivity and a consequent decoupling of the brain's integrative thought processes. The rise of in vivo neuroimaging techniques has refueled the formulation of dysconnectivity hypotheses, linking schizophrenia to abnormal structural and functional connectivity in the brain at both microscopic and macroscopic levels. Over the past few years, advances in high-field structural and functional neuroimaging techniques have made it increasingly feasible to reconstruct comprehensive maps of the macroscopic neural wiring system of the human brain, know as the connectome. In parallel, advances in network science and graph theory have improved our ability to study the spatial and topological organizational layout of such neural connectivity maps in detail. Combined, the field of neural connectomics has created a novel platform that provides a deeper understanding of the overall organization of brain wiring, its relation to healthy brain function and human cognition, and conversely, how brain disorders such as schizophrenia arise from abnormal brain network wiring and dynamics. In this review we discuss recent findings of connectomic studies in schizophrenia that examine how the disorder relates to disruptions of brain connectivity.
Collapse
|