1
|
Hamed S, Emara M, Tohidifar P, Rao CV. N-Acetyl cysteine exhibits antimicrobial and anti-virulence activity against Salmonella enterica. PLoS One 2025; 20:e0313508. [PMID: 39775338 PMCID: PMC11706409 DOI: 10.1371/journal.pone.0313508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella enterica is a common foodborne pathogen that causes intestinal illness varying from mild gastroenteritis to life-threatening systemic infections. The frequency of outbreaks due to multidrug-resistant Salmonella has been increased in the past few years with increasing numbers of annual deaths. Therefore, new strategies to control the spread of antimicrobial resistance are required. In this work, we found that N-acetyl cysteine (NAC) inhibits S. enterica at MIC of 3 mg ml-1 and synergistically activates the bactericidal activities of common antibiotics from three-fold for ampicillin and apramycin up to1000-fold for gentamycin. In addition, NAC inhibits the expression of virulence genes at sub-inhibitory concentrations in a dose-dependent manner. The whole-genome sequencing revealed that continuous exposure of S. enterica to NAC leads to the development of resistance; these resistant strains are attenuated for virulence. These results suggest that NAC may be a promising adjuvant to antibiotics for treating S. enterica in combination with other antibiotics.
Collapse
Affiliation(s)
- Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University− Ain Helwan, Helwan, Cairo, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University− Ain Helwan, Helwan, Cairo, Egypt
| | - Payman Tohidifar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
2
|
Du B, Yan X, Ding X, Wang Q, Du Q, Xu T, Shen G, Yao H, Zhou J. Oxygen Self-Production Red Blood Cell Carrier System for MRI Mediated Cancer Therapy: Ferryl-Hb, Sonodynamic, and Chemical Therapy. ACS Biomater Sci Eng 2018; 4:4132-4143. [PMID: 33418812 DOI: 10.1021/acsbiomaterials.8b00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypoxia in tumors can lead to insufficient oxygen supply during sonodynamic therapy (SDT), which in turn strengthens tumor resistance to sonodynamic efficacy. To conquer hypoxia in tumors and improve the treatment effectiveness, we developed oxygen self-production red blood cell (RBC) carrier system to decompose tumor endogenic H2O2 into O2 and combine triplex cancer therapy: ferryl-hemoglobin (ferryl-Hb), sonodynamic, and chemical therapy. Both hydrophilic sonosensitizer and doxorubicin (DOX) were encapsulated inside RBCs (DOX/Mn-TPPS@RBCs). The drug release can be improved by combining the effects of H2O2 and ultrasonic irradiation. Here, we introduced a contrast agent, meso-tetra (4-sulfonatephenyl) porphyrinate manganese(III) complex (Mn-TPPS), which could be used to enhance the signal intensity of magnetic resonance imaging (MRI) of the tumor site. The feasibility of Mn-TPPS as a sonosensitizer was investigated during SDT. Importantly, DOX/Mn-TPPS@RBCs overcame hypoxia in the tumor and improved the efficacy of SDT owing to the O2 generation by the catalase-catalyzed decomposition of tumor endogenic H2O2. Hemoglobin was simultaneously oxidized into highly oxidative ferryl-Hb species by H2O2 and reactive oxygen species, resulting in cytotoxicity. Overall, this drug delivery system is a promising therapeutic agent involving in situ production of oxygen inside the tumor, triplex therapy, and MRI.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Xiaosa Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyu Ding
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qinghui Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianguo Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guopeng Shen
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
| | - Hanchun Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, China
| |
Collapse
|
3
|
Muzzelo C, Neely C, Shah P, Abdulmalik O, Elmer J. Prolonging the shelf life of Lumbricus terrestris erythrocruorin for use as a novel blood substitute. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:39-46. [PMID: 28278582 DOI: 10.1080/21691401.2017.1290645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Limitations associated with the storage of red blood cells have motivated the development of novel blood substitutes that are able to withstand long-term storage at elevated temperatures. The hemoglobin of the earthworm Lumbricus terrestris (LtEc) is an attractive blood substitute candidate, since it is resistant to oxidation and aggregation during storage. Several factors were investigated to optimize the thermal and oxidative stability of LtEc during storage, including pH, antioxidant supplements, and deoxygenation. A strategy for the reduction of fully oxidized LtEc with antioxidants was also developed. Overall, LtEc was shown to have the highest thermal stability in Ringer's Modified Lactate solution with 10 mM HEPES at pH 7.0. Deoxygenation of the LtEc was also shown to significantly reduce oxidation of the ferrous heme iron (e.g., %Fe2+ after 7 d at 37 °C = 75.7%). However, even in cases where oxidation does occur, the addition of 1.8 mM ascorbic acid (AA) was found to reduce 98.3% of the oxidized LtEc (37 μM heme). Most importantly, the oxygen transport properties of LtEc were unaffected by storage at high temperatures or oxidation followed by reduction with AA. These results show that LtEc can be stored at high temperatures (37 °C) without any significant loss of function.
Collapse
Affiliation(s)
- Christine Muzzelo
- a Department of Chemical Engineering , Villanova University , Villanova , PA , USA
| | - Christopher Neely
- a Department of Chemical Engineering , Villanova University , Villanova , PA , USA
| | - Payal Shah
- a Department of Chemical Engineering , Villanova University , Villanova , PA , USA
| | - Osheiza Abdulmalik
- b Division of Hematology , ARC Suite 302F, The Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Jacob Elmer
- a Department of Chemical Engineering , Villanova University , Villanova , PA , USA
| |
Collapse
|
4
|
Clafshenkel WP, Murata H, Andersen J, Creeger Y, Koepsel RR, Russell AJ. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes. PLoS One 2016; 11:e0157641. [PMID: 27331401 PMCID: PMC4917246 DOI: 10.1371/journal.pone.0157641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022] Open
Abstract
Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.
Collapse
Affiliation(s)
- William P. Clafshenkel
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Hironobu Murata
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jill Andersen
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yehuda Creeger
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Richard R. Koepsel
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Alan J. Russell
- The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Luo Z, Zheng M, Zhao P, Chen Z, Siu F, Gong P, Gao G, Sheng Z, Zheng C, Ma Y, Cai L. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy. Sci Rep 2016; 6:23393. [PMID: 26987618 PMCID: PMC4796897 DOI: 10.1038/srep23393] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/03/2016] [Indexed: 02/08/2023] Open
Abstract
Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.
Collapse
Affiliation(s)
- Zhenyu Luo
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.,Department of Chemistry, Guangdong Medical University, Dongguan 523808, PR China
| | - Pengfei Zhao
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Fungming Siu
- Center for High Performance Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Guanhui Gao
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zonghai Sheng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Cuifang Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| |
Collapse
|
6
|
Chen G, Duan Y, Liu J, Wang H, Yang C. Antioxidant effects of vitamin C on hemoglobin-based oxygen carriers derived from human cord blood. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:56-61. [DOI: 10.3109/21691401.2015.1111239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|