1
|
Kumbhar PS, Kamble V, Vishwas S, Kumbhar P, Kolekar K, Gupta G, Veiga F, Paiva-Santos AC, Goh BH, Singh SK, Dua K, Disouza J, Patravale V. Unravelling the success of transferosomes against skin cancer: Journey so far and road ahead. Drug Deliv Transl Res 2024; 14:2325-2344. [PMID: 38758498 DOI: 10.1007/s13346-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Vikas Kamble
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pranav Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Gaurav Gupta
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
2
|
Raghav SS, Kumar B, Sethiya NK, Pahwa S. Development and optimization of kaempferol loaded ethosomes using Box-Behnken statistical design: In vitro and ex-vivo assessments. J Biomed Mater Res B Appl Biomater 2024; 112:e35394. [PMID: 38433621 DOI: 10.1002/jbm.b.35394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box-Behnken design (BBD) (three-factor, three-level (33 )). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, in-vitro release, ex-vivo permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of -29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. In vitro drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer-Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm2 was determined and compared with pure KMP (118.46 ± 0.3 μg/cm2 ) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, India
| | | | - Shilpa Pahwa
- Faculty of Pharmacy, Lloyd Institute of Management and Technology, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Shetty A, Dubey A, Chrystle J, M M, John A, N A, Das P, Hebbar S. Fabrication and in vitro characterization of curcumin film-forming topical spray: An integrated approach for enhanced patient comfort and efficacy. F1000Res 2024; 13:138. [PMID: 38779313 PMCID: PMC11109671 DOI: 10.12688/f1000research.142860.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 05/25/2024] Open
Abstract
Background Curcumin, known for its anti-inflammatory properties, was selected for the developing consumer friendly film forming spray that offers precise delivery of curcumin and and improves patient adherence. Methods An optimized film-forming solution was prepared by dissolving curcumin (1%), Eudragit RLPO (5%), propylene glycol (1%), and camphor (0.5%) in ethanol: acetone (20:80) as the solvent. The solution was filled in a spray container which contained 70% solutions and 30% petroleum gas. In-vitro characterization was performed. Results Potential anti-inflammatory phytoconstituents were extracted from the PubChem database and prepared as ligands, along with receptor molecules (nsp10-nsp16), for molecular docking using Autodock Vina. The docking study showed the lowest binding energy of -8.2 kcal/mol indicates better binding affinities. The optimized formulation consisted of ethanol:acetone (20:80) as the solvent, Eudragit RLPO (5%) as the polymer, propylene glycol (1%) as the plasticizer, and camphor oil (0.5%) as the penetration enhancer. The optimized formulation exhibited pH of 5.8 ± 0.01, low viscosity, low film formation time (19.54 ± 0.78 sec), high drug content (8.243 ± 0.43 mg/mL), and extended ex vivo drug permeation (85.08 ± 0.09%) for nine hours. Consequently, the formulation was incorporated into a container using 30% liquefied petroleum gas, delivering 0.293 ± 0.08 mL per actuation, containing 1.53 ± 0.07 mg of the drug. The film-forming spray exhibited higher cumulative drug permeation (83.94 ± 0.34%) than the marketed cream formulation and pure drug solution after 9 h, with an enhancement ratio of 14. Notably, the film-forming spray exhibited no skin irritation and remained stable for over three months. Conclusions The developed curcumin film-forming system is promising as a carrier for wound management because of its convenient administration and transport attributes. Further in vivo studies are required to validate its efficacy in wound management.
Collapse
Affiliation(s)
- Amitha Shetty
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Akhilesh Dubey
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Jeshma Chrystle
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Manohar M
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Anish John
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Amitha N
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Paramita Das
- Department of Pharma chemistry, Krupanidhi College of Pharmacy, Bangaluru, Karnataka, 560035, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
4
|
Tilawat M, Bonde S. Curcumin and quercetin loaded nanocochleates gel formulation for localized application in breast cancer therapy. Heliyon 2023; 9:e22892. [PMID: 38058440 PMCID: PMC10696209 DOI: 10.1016/j.heliyon.2023.e22892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
After surgical excision of breast cancer, chemotherapy is recommended to eradicate any undiagnosed cancer cells and lower the likelihood of the cancer recurring. Curcumin and quercetin are two old flavonoid medicines used to treat breast cancer. Besides ambient popularity, they possess poor water solubility and poor bioavailability, limiting their usefulness. Hence to overcome these limitations, the present research aims to formulate curcumin and quercetin-loaded nanocochleates and convert them into a gel for localized application to enhance the breast cancer treatment. In this research article, we have developed curcumin and quercetin-loaded nanocochleates gel for breast cancer adjuvant therapy. The particle size, zeta potential encapsulation efficiency, and drug release of quercetin nanocochleates were 327 nm, -16.8 mV, 83.28 %, and 80.23 %, respectively, and that of curcumin nanocochleates were 328.6 nm, -15.0 mV, 82.30 %, and 77.19 %, respectively. The quercetin and curcumin-loaded nanocochleates gel was further characterized for pH, spreadability, and viscosity. The in vitro drug release behaviour of gel is controlled compared to plain quercetin and quercetin nanocochleates. The release of quercetin and curcumin from nanocochleates gel was 78.19 %, and 77.19 %, respectively. The MTT assay results showed quercetin and curcumin-loaded nanocochleates have maximum inhibition compared to control, quercetin alone, quercetin liposomes, and quercetin nanocochleates. Thus the quercetin and curcumin combination nanocochleates gel formulation can be a better option for the localized application in the breast cancer treatment.
Collapse
Affiliation(s)
- Meena Tilawat
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
- Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
- SSR College of Pharmacy, 396230, UT of Dadra and Nagar Haveli, Silvassa, India
| |
Collapse
|
5
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Gorantla S, Rao Puppala E, Naidu V, Saha RN, Singhvi G. Design of chondroitin sulphate coated proglycosomes for localized delivery of tofacitinib for the treatment of rheumatoid arthritis. Eur J Pharm Biopharm 2023; 186:43-54. [PMID: 36940886 DOI: 10.1016/j.ejpb.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Long-term oral tofacitinib (TOF) administration has been linked to serious side effects majorly immunological suppression. The aim of this work was to enhance the therapeutic efficacy of TOF by chondroitin sulphate (CS) coated proglycosomes through the anchoring of high-affinity CS to CD44 receptors on immune cells in the inflammatory region. The CS was coated onto the TOF-loaded proglycosomes (CS-TOF-PG) formulations and they were evaluated for in vitro drug release, ex vivo (permeation, dermatokinetics) studies. In vivo efficacy studies were carried out in Freund's complete adjuvant (CFA) induced arthritis model. The optimized CS-TOF-PG showed particle sizes of 181.13 ± 7.21 nm with an entrapment efficiency of 78.85 ± 3.65 %. Ex-vivo studies of CS-TOF-PG gel exhibited 1.5-fold high flux and 1.4-fold dermal retention compared to FD-gel. The efficacy study revealed that CS-TOF-PG showed a significant (P < 0.001) reduction in inflammation in arthritic rat paws compared to the TOF oral and FD gel. The current study ensured that the CS-TOF-PG topical gel system would provide a safe and effective formulation for localization and site-specific delivery of TOF at the RA site and overcome the adverse effects associated with the TOF.
Collapse
Affiliation(s)
- Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Vgm Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India, 781101
| | - Ranendra N Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India - 333031.
| |
Collapse
|
7
|
Solid lipid nanoparticles dispersed topical hydrogel for Co-delivery of adapalene and minocycline for acne treatment. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Üner B, Özdemir S, Taş Ç, Özsoy Y, Üner M. Development of Lipid Nanoparticles for Transdermal Loteprednol Etabonate Delivery. J Microencapsul 2022; 39:327-340. [PMID: 35583383 DOI: 10.1080/02652048.2022.2079744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Loteprednol etabonate (LE) is a new generation corticosteroid that is used for the treatment of inflammatory and allergic conditions of the eye. Therefore, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were attempted to improve for transdermal LE delivery for the first time. METHODS SLN and NLC were produced by hot homogenization and ultrasonication technique. Their physical stability was monitored for 3 months of storage. Drug release and permeation of SLN and NLC through the porcine skin were investigated. RESULTS It was determined that SLN and NLC mean particle size as 139.1 nm had a homogeneous particle size distribution (∼0,169 PI) and mean charge as -23.6. They were found to be stable both physically and chemically at room temperature. CONCLUSION SLN and NLC formulations of LE can be stated among the systems that can be an alternative to conventional systems with less side-effect in the treatment of inflammatory problems.
Collapse
Affiliation(s)
- Burcu Üner
- Istanbul University, Institute of Graduate Studies in Health Sciences, Fatih, 34126 Istanbul, Turkey.,Yeditepe University, Faculty of Pharmacy, Atasehir 34755, Istanbul, Turkey
| | - Samet Özdemir
- Istanbul Health and Technology University, Faculty of Pharmacy, Zeytinburnu 34010, Istanbul, Turkey
| | - Çetin Taş
- Yeditepe University, Faculty of Pharmacy, Atasehir 34755, Istanbul, Turkey
| | - Yıldız Özsoy
- Istanbul University, Faculty of Pharmacy, Beyazıt, 34116 Istanbul, Turkey
| | - Melike Üner
- Istanbul University, Faculty of Pharmacy, Beyazıt, 34116 Istanbul, Turkey
| |
Collapse
|
9
|
Ayunin Q, Miatmoko A, Soeratri W, Erawati T, Susanto J, Legowo D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emulgel. Sci Rep 2022; 12:906. [PMID: 35042910 PMCID: PMC8766480 DOI: 10.1038/s41598-021-04708-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a naturally produced organic molecule which acts as an antioxidant agent, including in skin anti-ageing, and plays a major role in the social determinants of health. However, its level in the body will decrease during ageing. Therefore, an external supplement is required to repair damaged skin, especially the skin dermis layer. This study aims to evaluate the use of a protransfersomal emulgel to improve the skin delivery and stability of CoQ10 which demonstrates low water solubility, poor permeability and instability. CoQ10 was initially dissolved in oleic acid at a weight ratio of 1:56. Protransfersome was then loaded with CoQ10 (Protransf-CoQ10) and prepared using a composition of L-α-Phosphatidylcholine and Tween 80 at a molar ratio of 85:15. The Protransf-CoQ10 was dispersed in an emulgel base consisting of Tween 80 and Span 80 to produce Protransf-CoQ10 emulgel. The in vivo studies of anti-aging activity and irritability were further evaluated by applying daily 200 mg of emulgels twice a day to a 4 cm2 section on the back of a UV-ray aging-induced male Balb/c mouse 20 min before irradiation. The results showed that Protransf-CoQ10 could transform into transfersomal vesicles with particle sizes of approximately 201.5 ± 6.1 nm and a zeta potential of - 11.26 ± 5.14 mV. The dispersion of Protransf-CoQ10 into emulgel base resulted in stable Protransf-CoQ10 Emulgel during 28 days of observation at low temperatures. Moreover, the in vivo study revealed that Protransf-CoQ10 Emulgel successfully increases the collagen density and number of fibroblast cells in UV radiation skin-aged induced-mice which reflects its potential for repairing the skin ageing process. In addition, the 24-h topical application of Protransf-CoQ10 Emulgel showed that no erythema or skin rash was observed during the study. In conclusion, loading CoQ10 into protransfersomal Emulgel successfully enhanced the stability and anti-ageing efficacy enabling its potential use as anti-ageing cosmetics.
Collapse
Affiliation(s)
- Qurrota Ayunin
- Master Program of Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Faculty of Pharmacy, Hospital Administration, Public Health, and Radiology, Study Program of Pharmacy, Institut Ilmu Kesehatan STRADA, Jl. Manila 37, Kediri, 64133, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Campus C Mulyorejo, Surabaya, 60115, Indonesia.
| | - Widji Soeratri
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Tristiana Erawati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Joni Susanto
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Campus A Mulyorejo, Surabaya, 60132, Indonesia
| | - Djoko Legowo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Mayjen. Prof. Dr. Moestopo No. 47, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
10
|
Yadav K, Singh D, Singh MR. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
12
|
Biswasroy P, Pradhan D, Kar B, Ghosh G, Rath G. Recent Advancement in Topical Nanocarriers for the Treatment of Psoriasis. AAPS PharmSciTech 2021; 22:164. [PMID: 34041632 DOI: 10.1208/s12249-021-02057-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a life-threatening autoimmune inflammatory skin disease, triggered by T lymphocyte. Recently, the drugs most commonly used for the treatment of psoriasis include methotrexate (MTX), cyclosporine (CsA), acitretin, dexamethasone, and salicylic acid. However, conventional formulations due to poor absorptive capacity, inconsistent drug release characteristics, poor capability of selective targeting, poor retention of drug molecules in target tissue, and unintended skin reactions restrict the clinical efficacy of drugs. Advances in topical nanocarriers allow the development of prominent drug delivery platforms can be employed to address the critical issues associated with conventional formulations. Advances in nanocarriers design, nano-dimensional configuration, and surface functionalization allow formulation scientists to develop formulations for a more effective treatment of psoriasis. Moreover, interventions in the size distribution, shape, agglomeration/aggregation potential, and surface chemistry are the significant aspects need to be critically evaluated for better therapeutic results. This review attempted to explore the opportunities and challenges of current revelations in the nano carrier-based topical drug delivery approach used for the treatment of psoriasis.
Collapse
|
13
|
Shah V, Jobanputra A, Saxena B, Nivsarkar M. Development and Characterization of Saturated Fatty Acid-Engineered, Silica-Coated Lipid Vesicular System for Effective Oral Delivery of Alfa-Choriogonadotropin. AAPS PharmSciTech 2021; 22:118. [PMID: 33782790 DOI: 10.1208/s12249-021-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
The present study was designed to develop an efficient, safe, and patient-friendly dosage form, for oral delivery of alfa-choriogonadotropin, used in the treatment of female reproductive infertility. Silica-coated, saturated fatty acid (dipalmitoylphosphatidylcholine (DPPC))-engineered, nanolipidic vesicular (NLVs) system was developed for systemic delivery of therapeutic peptide, alfa-choriogonadotropin, through oral route. DPPC-based NLVs were formulated using the technique of thin-film hydration and were coated with silica to form a homogeneous surface silica shell. The formulated silica-coated NLVs were evaluated for physicochemical and physiologic stability under simulated conditions and were optimized based on physicochemical parameters like particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, and in vitro release profile. Silica-coated, DPPC-based NLVs imparted physicochemical stability to entrapped alfa-choriogonadotropin against the biological environment prevailing in the human gastrointestinal tract (GIT). In vivo, subchronic animal toxicity studies were performed to assess the safety of the designed dosage form. Results of in vitro characterization and in vivo pharmacokinetic studies of fabricated formulation revealed that the silica-coated, DPPC-based NLV formulation was not only stable in human GIT but was also as efficacious as a marketed parenteral formulation for the systemic delivery of alfa-choriogonadotropin. In vivo toxicity studies revealed that silica-coated NLVs did not alter hematological and serum biochemical parameters. The histopathological studies also depicted no macroscopic changes in major organs; thus, the developed formulation was proven to be nontoxic and equally efficient as a marketed parenteral formulation for the delivery of alfa-choriogonadotropin with added benefits of possible self-medication, more patient acceptability, and no chances of infection.
Collapse
|
14
|
Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02377-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Rapalli VK, Kaul V, Waghule T, Gorantla S, Sharma S, Roy A, Dubey SK, Singhvi G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci 2020; 152:105438. [DOI: 10.1016/j.ejps.2020.105438] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
|
16
|
Rajput RL, Narkhede JS, Mujumdar A, Naik JB. Synthesis and evaluation of luliconazole loaded biodegradable nanogels prepared by pH-responsive Poly (acrylic acid) grafted Sodium Carboxymethyl Cellulose using amine based cross linker for topical targeting: In vitro and Ex vivo assessment. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1759633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rahul L. Rajput
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Jitendra S. Narkhede
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Arun Mujumdar
- Department of Chemical & Biochemical Engineering, Western University, London, Ontario, Canada
| | - Jitendra B. Naik
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| |
Collapse
|
17
|
Ahmad N, Ahmad R, Mohammed Buheazaha T, Salman AlHomoud H, Al-Nasif HA, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci 2020; 27:1024-1040. [PMID: 32256163 PMCID: PMC7105695 DOI: 10.1016/j.sjbs.2020.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 01/05/2023] Open
Abstract
AIM OF THE STUDY 5-Fluorouracil (5-FU) can't be given orally because of very low bioavailability and produces serious adverse effects. Therefore, the main objective of this research is to develop, evaluate, and comparative effects by different nanoformulations of topical application on chemoprevention of skin cancer in different types of skin. MATERIAL AND METHODS Castor oil (oil), Transcutol HP (surfactant), and Polyethylene glycol (PEG)-400 (co-surfactant) have taken on the basis of nonionic property and highest nanoemulsion (NE)-region. Aqueous micro titration method with ultra-sonication method (based on high energy) was used for the preparation of 5-FU-NE. Optimized-5-FU-NE was stable thermodynamically, and their characterizations was performed on the basis of globule size, zeta potential, refractive index, and viscosity. Optimized-NE has been converted into 5-FU-NE-Gel with the help of Carbopol® 934 and also performed their permeation studies in the different skins (cow, goat, and rat, ex vivo) using Logan transdermal diffusion cell (DHC-6T). Optimized-5-FU-NE and 5-FU-NE-Gel were evaluated cytotoxic studies (in vitro) on the melanoma cell lines. RESULTS The permeation of 5-FU from 5-FU-NE-Gel nanoformulation for rat skin model was 1.56 times higher than the 5-FU-NE and 12.51 times higher than the 5-FU-S for the cow and goat skin model. The values of steady state flux and permeability coefficient for 5-FU-NE-Gel of rat skin were higher i.e. 12.0244 ± 1.12 µgcm-2h-1 and 1.2024 ± 0.073 × 10-2 µg cm-2h-1, respectively. Optimized-5-FU-NE and 5-FU-NE-Gel nanoformulation were found to be physically stable. SK-MEL-5 cancer cells have showed the results based on cytotoxicity studies (in vitro) that 5-FU as Optimized-5-FU-NE-Gel is much more efficacious than 5-FU-NE followed by free 5-FU. Localization of 5-FU from 5-FU-NE-Gel was higher with higher permeation in rat skin. CONCLUSION 5-FU-NE-Gel is found to be for the better to treatment of cutaneous malignancies. It can be developed 5-FU-NE-Gel could be a promising vehicle for the skin cancer chemoprevention.
Collapse
Key Words
- 5-FU, 5-Fluorouracil
- 5-FU-NE-Gel, 5-Fluorouracil Nanoemulsion Gel
- 5-Fluorouracil
- ANOVA, Analysis of variance
- BCS, Biopharmaceutical Classification System
- Cytotoxic activity
- DDTC, Diethyldithiocarbamate
- DSC, Differential Scanning Calorimetry
- Different skin permeation, chemoprevention
- Electrospray Ionization, ESI
- Er, Enhancement Ratio
- FT-IR, Fourier-transform infrared spectroscopy
- Kp, Permeability Coefficient
- Local accumulation efficiency
- NE, Nanoemulsion
- Nanoemulsion
- Nanoemulsion-gel
- PBS, phosphate buffered solution
- PDI, Polydispersity Index
- RI, Refractive index
- SEM, Scanning Electron Microscope
- TEM, Transmission Electron Microscope
- Transdermal delivery
- UHPLC-MS/MS, Ultra high performance liquid chromatography mass spectroscopy and mass spectroscopy
- ZP, Zeta Potential
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Taysser Mohammed Buheazaha
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hussain Salman AlHomoud
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hassan Ali Al-Nasif
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Ge Y, Zheng N, Chen X, Zhu J, Sun W, Olson JR, Aga DS, Hu W, Tang X, Ren X. GMDTC Chelating Agent Attenuates Cisplatin-Induced Systemic Toxicity without Affecting Antitumor Efficacy. Chem Res Toxicol 2019; 32:1572-1582. [PMID: 31240907 DOI: 10.1021/acs.chemrestox.9b00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cisplatin is a platinum-based chemotherapeutic drug widely used in the treatment of various cancers such as testicular, ovarian, lung, bladder, and cervical cancers. However, its use and the dosage range applied have been limited by severe side effects (e.g., nephrotoxicity and ototoxicity) and by the development of resistance to cisplatin in patients during treatment. Metal chelators have shown promising potential in overcoming these problems often associated with platinum drugs. Previously, a new chelating agent, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)-4(methylthio)butanoate (GMDTC), was developed. In this study, we examined the effect of GMDTC in modifying cisplatin-induced toxicities following in vitro and in vivo exposures. GMDTC treatment dramatically reduced cisplatin-induced apoptosis and cytotoxicity in HK2 cells by decreasing the amount of intracellular platinum. In the 4T1 breast cancer mouse model, GMDTC reduced cisplatin-induced nephrotoxicity by reducing cisplatin deposition in the kidney. GMDTC attenuated cisplatin-induced elevations in blood urea nitrogen and plasma creatinine, ameliorated renal tubular dilation and vacuolation, and prevented necrosis of glomeruli and renal tubular cells. GMDTC also inhibited cisplatin-induced ototoxicity as shown by improved hearing loss which was assessed using the auditory brainstem response test. Furthermore, GMDTC attenuated cisplatin-induced hematotoxicity and hepatotoxicity. Importantly, co-treatment of cisplatin with GMDTC did not affect cisplatin antitumor efficacy. Tumor growth, size, and metastasis were all comparable between the cisplatin only and cisplatin-GMDTC co-treatment groups. In conclusion, the current study suggests that GMDTC reduces cisplatin-induced systemic toxicity by preventing the accumulation and assisting in the removal of intracellular cisplatin, without compromising cisplatin therapeutic activity. These results support the development of GMDTC as a chemotherapy protector and rescue agent to overcome the toxicity of and resistance to platinum-based antineoplastic drugs.
Collapse
Affiliation(s)
- Yichen Ge
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions , The State University of New York , Buffalo , New York 14214 , United States
| | - Nina Zheng
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences , The State University of New York , Buffalo , New York 14214 , United States
| | - Xushen Chen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions , The State University of New York , Buffalo , New York 14214 , United States
| | - Jinqiu Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions , The State University of New York , Buffalo , New York 14214 , United States
| | - Wei Sun
- Department of Communicative Disorders and Sciences, College of Arts and Sciences , The State University of New York , Buffalo , New York 14214 , United States
| | - James R Olson
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions , The State University of New York , Buffalo , New York 14214 , United States.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences , The State University of New York , Buffalo , New York 14214 , United States
| | - Diana S Aga
- Department of Chemistry, College of Arts and Sciences , The State University of New York , Buffalo , New York 14260 , United States
| | - Wei Hu
- Guangdong Zoolgen Bio-Tec Co., Ltd. , GuangZhou 510530 , China
| | - Xiaojiang Tang
- Guangdong Zoolgen Bio-Tec Co., Ltd. , GuangZhou 510530 , China.,Southern Medical University, Guangzhou , GuangZhou 510515 , China
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions , The State University of New York , Buffalo , New York 14214 , United States.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences , The State University of New York , Buffalo , New York 14214 , United States
| |
Collapse
|
19
|
Fabrication, optimization and characterization of Triamcinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis: Application of Box Behnken design, in vitro and ex vivo studies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Yazdani-Arazi SN, Ghanbarzadeh S, Adibkia K, Kouhsoltani M, Hamishehkar H. Histological evaluation of follicular delivery of arginine via nanostructured lipid carriers: a novel potential approach for the treatment of alopecia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1379-1387. [DOI: 10.1080/21691401.2016.1241794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Seyedeh Narjes Yazdani-Arazi
- Biotechnology Research Center and Students’ Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Khosro Adibkia
- Dermatology & Dermopharmacy Research Team, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Research Center for Pharmaceutical Nanotechnology and Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Pradhan M, Singh D, Singh MR. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:392-400. [PMID: 25229831 DOI: 10.3109/21691401.2014.955105] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim of the study was to develop solid lipid nanoparticles (SLN) of triamcinolone acetonide (TA) and to study the effect of various process variables in order to optimize the formulation for effective delivery. Drug loaded SLNs were successfully prepared and characterized by TEM, XRD and DSC study. Process variables like surfactant concentration, drug concentration, lipid concentration etc. showed significant effect on the particle size and entrapment efficiency. SLNs exhibited prolonged drug release following Higuchi release kinetics (R(2) = 0.9909). In vitro skin distribution study demonstrated systemic escape of drug from TA loaded SLNs which might eliminate side effects associated with systemic exposure.
Collapse
Affiliation(s)
- Madhulika Pradhan
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Deependra Singh
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | - Manju Rawat Singh
- a Pharmaceutical Biotechnology Laboratory, University Institute of Pharmacy, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| |
Collapse
|