1
|
Wu Q, Lin H, Shen W, Cao W, Qin X, Gao J, Chen Z, Zheng H, Zhong S, Huang H. The Preventive Effect of Low-Molecular Weight Oyster Peptides on Lipopolysaccharide-Induced Acute Colitis in Mice by Modulating Intestinal Microbiota Communities. Foods 2024; 13:2391. [PMID: 39123582 PMCID: PMC11311859 DOI: 10.3390/foods13152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Colitis causes inflammation, diarrhoea, fever, and other serious illnesses, posing a serious threat to human health and safety. Current medications for the treatment of colitis have serious side effects. Therefore, the new strategy of creating a defence barrier for immune function by adding anti-inflammatory foods to the daily diet is worth advocating for. Low-molecular weight oyster peptides (LOPs) are a natural food with anti-inflammatory activity extracted from oysters, so intervention with LOPs is likely to be an effective preventive solution. The aim of this study was to investigate the preventive effect of LOPs on lipopolysaccharide (LPS)-induced acute colitis inflammation in mice and its underlying mechanism. The results showed that LOPs not only inhibited the colonic histopathy in mice induced by LPS-induced inflammation but also reduced the inflammatory response in the blood. In addition, LOPs significantly increased the number of beneficial bacteria (Alistipes, Mucispirillum, and Oscillospira), decreased the number of harmful bacteria (Coprobacillus, Acinetobater) in the intestinal microbiota, and further affected the absorption and utilisation of short-chain fatty acids (SCFAs) in the intestinal tract. In conclusion, dietary supplementation with LOPs is a promising health-promoting dietary supplement and nutraceutical for the prevention of acute colitis by reducing the inflammatory response and modulating the intestinal microbial communities.
Collapse
Affiliation(s)
- Qihang Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoyang Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| |
Collapse
|
2
|
Lv R, Sun N, Mao C, Zheng Z, Lin S. Prevention and potential repair of colitis: Beneficial effects and regulatory mechanisms of food-derived anti-inflammatory peptides. Crit Rev Food Sci Nutr 2023; 64:8184-8202. [PMID: 37017113 DOI: 10.1080/10408398.2023.2197068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Intestinal inflammatory diseases are increasingly prevalent worldwide, and their pathogenesis is still not fully understood. As of late, studies have discovered that food-derived peptides have specific anti-inflammatory activity and can play a positive role in intestinal health. At the same time, it has broad application prospects in the prevention and treatment of colitis because of its wide source, fast absorption, and high safety. This article reviews the structure-activity and quantity-effect relationships of food-derived peptides for their anti-inflammatory effects. It then discusses their mechanism of action in inhibiting colitis from four aspects. Food-derived anti-inflammatory peptides can delay the progression of the disease by stimulating innate immunity, inhibiting inflammation, and promoting wound healing. Further experiments showed that food-derived anti-inflammatory peptides could prevent and treat colitis through four mechanisms: (a) regulation of inflammatory cytokines; (b) regulation of inflammatory pathways; (c) regulation of intestinal epithelial barrier; (d) regulation of intestinal flora balance. However, due to the treatment of colitis having limitations, there is an urgent to develop food-derived anti-inflammatory peptides as a treatment or adjunctive treatment for colitis. This review highlights the positive effects of food-derived peptides on colitis and anticipates the appearance of mitigating peptides for the therapy of colitis.
Collapse
Affiliation(s)
- Renzhi Lv
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chuwen Mao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Zhihong Zheng
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
3
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
4
|
Mohammadi S, Zakeri-Milani P, Golkar N, Farkhani SM, Shirani A, Shahbazi Mojarrad J, Nokhodchi A, Valizadeh H. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1572-1585. [PMID: 28933182 DOI: 10.1080/21691401.2017.1379016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A new class of cell penetrating peptides (CPPs) named peptide amphiphile was designed to improve the intracellular uptake and the antitumor activity of epirubicin (EPR). Various amphiphilic CPPs were synthesized by solid phase peptide synthesis method and were chemically conjugated to EPR. Their corresponding nanoparticles (CPPs-E4 and CPPs-E8) were prepared via non-covalent binding of the peptides and polyanions. Cytotoxicity and anti-proliferative activity were evaluated by MTT assay. Cellular uptake was examined by flow cytometry and fluorescence microscopy. The CPPs exhibited slight cytotoxicity. Binding of polyglutamate to CPPs (CPPs-E4 and CPPs-E8 nanoparticles) decreased their cytotoxicity. CPPs-E8 nanoparticles showed lower cytotoxicity than CPPs-E4 nanoparticles. Cellular uptake of K3W4K3-E8, K2W4K2-E8 and W3K4W3-E8 reached 100% with no difference between each of the mentioned CPPs and its nanoparticles at 50 µM. The anti-proliferative activity of EPR was enhanced following conjugation to peptides and nanoparticles at 25 µM. CPPs-EPR-E4 and CPPs-E8-EPR nanoparticles displayed higher anti-proliferative activity than CPPs-EPR at 25 µM. CPPs-E8-EPR nanoparticles showed higher anti-proliferative activity than CPPs-E4-EPR. K3W4K3-E8-EPR nanoparticles exhibited the highest anti-proliferative activity at 25 µM. The synthesized peptide nanoparticles are proposed as suitable carriers for improving the intracellular delivery of EPR into tumor cells with low cytotoxicity and high antitumor activity.
Collapse
Affiliation(s)
- Samaneh Mohammadi
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Parvin Zakeri-Milani
- b Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasim Golkar
- c Pharmaceutics Department, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Samad Mussa Farkhani
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Shirani
- a Biotechnology Research Center and Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,d Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Javid Shahbazi Mojarrad
- b Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Nokhodchi
- e Pharmaceutics Research Laboratory, School of Life Sciences , University of Sussex , Brighton , UK
| | - Hadi Valizadeh
- f Drug Applied Research Center and Faculty of Pharmacy , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|