1
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
2
|
Barati A, Huseynzade A, Imamova N, Shikhaliyeva I, Keles S, Alakbarli J, Akgul B, Bagirova M, Allahverdiyev AM. Nanotechnology and malaria: Evaluation of efficacy and toxicity of green nanoparticles and future perspectives. J Vector Borne Dis 2024; 61:340-356. [PMID: 38634366 DOI: 10.4103/jvbd.jvbd_175_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Malaria is a global health problem that causes 1.5-2.7 million deaths worldwide each year. Resistance to antimalarial drugs in malaria parasites and to insecticides in vectors is one of the most serious issues in the fight against this disease. Moreover, the lack of an effective vaccine against malaria is still a major problem. Recent developments in nanotechnology have resulted in new prospects for the fight against malaria, especially by obtaining metal nanoparticles (NPs) that are less toxic, highly biocompatible, environmentally friendly, and less expensive. Numerous studies have been conducted on the synthesis of green NPs using plants and microorganisms (bacteria, fungi, algae, actinomycetes, and viruses). To our knowledge, there is no literature review that compares toxicities and antimalarial effects of some of the existing metallic nanoparticles, revealing their advantages and disadvantages. Hence, the purpose of this work is to assess metal NPs obtained through various green synthesis processes, to display the worth of future malaria research and determine future strategies. Results revealed that there are very few studies on green NPs covering all stages of malaria parasites. Additionally, green metal nanoparticles have yet to be studied for their possible toxic effects on infected as well as healthy erythrocytes. Morever, the toxicities of green metal NPs obtained from various sources differed according to concentration, size, shape, synthesis method, and surface charge, indicating the necessity of optimizing the methods to be used in future studies. It was concluded that studies on the toxic properties of green nanoparticles would be very important for the future.
Collapse
Affiliation(s)
- Ana Barati
- Faculty of Graduate School of Science, Art and Technology, Khazar University, Baku, Azerbaijan Republic
| | - Ayan Huseynzade
- Department of Microbiology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Nergiz Imamova
- Division of Genetic Research and Genetic Engineering, Department of Genetic Engineering, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Inji Shikhaliyeva
- Division of Stem Cell and Regenerative Medicine, Department of Genetic Engineering and Biotechnology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Sedanur Keles
- Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- Department of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Buşra Akgul
- Department of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Microbiology, V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| | - Adil M Allahverdiyev
- V.Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan Republic
| |
Collapse
|
3
|
Aricov L, Precupas A, Tudose M, Baltag D, Trică B, Sandu R, Leonties AR. Trametes versicolor laccase activity modulated by the interaction with gold nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116920. [PMID: 37597828 DOI: 10.1016/j.envres.2023.116920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
In this study, the impact of gold nanoparticles (AuNPs) on the structure and activity of laccase from Trametes versicolor (Lc) was described. Fluorescence experiments revealed that AuNPs efficiently quench Lc's tryptophan fluorescence by a static and dynamic process. By using differential scanning microcalorimetry and circular dichroism spectroscopy, it was determined how the concentration of nanoparticles and the composition of the medium affected the secondary structure of Lc. The data revealed that upon binding with AuNPs, conformational changes take place mainly in presence of high amounts of nanoparticles. The complex kinetic analysis unveiled the Lc activity enhancement at low concentrations of AuNPs as opposed to the concentrated regime, where it can be reduced by up to 55%. The Michaelis-Menten tests highlighted that the activity of the biocatalyst is closely related to the concentration of AuNPs, while the Selwyn analysis demonstrated that even in a concentrated regime of Lc it is not deactivated regardless of the amount of AuNPs added. The thermal parameters improved by twofold in the presence of low AuNPs concentration, whereas the activation energy increased with AuNPs content, implying that not all collisions are beneficial to the enzyme structure. The effect of AuNPs on the decomposition of a recalcitrant dye (naphthol green B, NG) by Lc was also evaluated, and the Michaelis-Menten model revealed that only the high AuNPs content influenced negatively the Lc activity. The isothermal titration calorimetry revealed that hydrogen bonds are the main intermolecular forces between Lc and AuNPs, while electrostatic interactions are responsible for NG adsorption to AuNPs. The results of the docking analysis show the binding of NG near the copper T1 site of Lc with hydrogen bonds, electrostatic and hydrophobic interactions. The findings of this work provide important knowledge for laccase-based bio-nanoconjugates and their use in the field of environmental remediation.
Collapse
Affiliation(s)
- Ludmila Aricov
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Aurica Precupas
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| | - Madalina Tudose
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Dragos Baltag
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Elisabeta 4-12, 030018, Bucharest, Romania; National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Romica Sandu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania
| | - Anca Ruxandra Leonties
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania.
| |
Collapse
|
4
|
Gaba S, Rai AK, Varma A, Prasad R, Goel A. Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Front Chem 2022; 10:966396. [PMID: 36110132 PMCID: PMC9468977 DOI: 10.3389/fchem.2022.966396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The biological synthesis of nanoparticles using fungal cultures is a promising and novel tool in nano-biotechnology. The potential culture of Trichoderma asperellum (T. asperellum) has been used to synthesize copper oxide nanoparticles (CuO NPs) in the current study. The necrotrophic infection in Brassica species is caused due to a foliar pathogen Alternaria brassicae (A. brassicae). Mycogenic copper oxide nanoparticles (M-CuO NPs) were characterized by spectroscopic and microscopic techniques such as UV-visible spectrophotometry (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antifungal potential of CuO NPs was studied against A. brassicae. M-CuO NPs exhibited a surface plasmon resonance (SPR) at 303 nm, and XRD confirmed the crystalline phase of NPs. FTIR spectra confirmed the stretching of amide bonds, and the carbonyl bond indicated the presence of enzymes in T. asperellum filtrate. SEM and TEM confirmed the spherical shape of M-CuO NPs with an average size of 22 nm. Significant antifungal potential of M-CuO NPs was recorded, as it inhibited the growth of A. brassicae up to 92.9% and 80.3% in supplemented media with C-CuO NPs at 200 ppm dose. Mancozeb and propiconazole inhibited the radial growth up to 38.7% and 44.2%. SEM confirmed the morphological changes in hyphae and affected the sporulation pattern. TEM revealed hardly recognizable organelles, abnormal cytoplasmic distribution, and increased vacuolization, and light microscopy confirmed the conidia with reduced diameter and fewer septa after treatment with both types of NPs. Thus, M-CuO NPs served as a promising alternative to fungicides.
Collapse
Affiliation(s)
- Swati Gaba
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, BR, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
5
|
Singh P, Mijakovic I. Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci Rep 2022; 12:7902. [PMID: 35551489 PMCID: PMC9098411 DOI: 10.1038/s41598-022-11811-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing demand for green or biological nanoparticles has led to various green technologies and resources, which play a critical role in forming biocompatible or green nanoparticles. So far, numerous medicinal plants have been explored for this purpose, assuming that medicinal components from the plant's material will contribute to corona formation around nanoparticles and enhance their efficacy. Research is also extended to other green and waste resources to be utilized for this purpose. In the current study, we explored Ligustrum vulgare berries, also known as privet berries, to reduce gold and silver salts into nanoparticles. L. vulgare berries showed great potential to form these nanoparticles, as gold nanoparticles (LV-AuNPs) formed within 5 min at room temperature, and silver nanoparticles (LV-AgNPs) formed in 15 min at 90 °C. LV-AuNPs and LV-AgNPs were characterized by various analytical methods, including UV–Vis, SEM, EDX, TEM, DLS, sp-ICP-MS, TGA, FT-IR, and MALDI-TOF. The results demonstrate that the LV-AuNPs are polydisperse in appearance with a size range 50–200 nm. LV-AuNPs exhibit various shapes, including spherical, triangular, hexagonal, rod, cuboid, etc. In contrast, LV-AgNPs are quite monodisperse, 20–70 nm, and most of the population was spherical. The nanoparticles remain stable over long periods and exhibit high negative zeta potential values. The antimicrobial investigation of LV-AgNPs demonstrated that the nanoparticles exhibit antibacterial ability with an MBC value of 150 g/mL against P. aeruginosa and 100 g/mL against E. coli, as determined by plate assay, live and dead staining, and SEM cell morphology analysis.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kogens Lyngby, Denmark.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, 2800, Kogens Lyngby, Denmark. .,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
6
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Mejía YR, Reddy Bogireddy NK. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv 2022; 12:18661-18675. [PMID: 35873318 PMCID: PMC9228544 DOI: 10.1039/d2ra02663e] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research. This review focuses on the basic perceptions of the green synthesis of metal nanoparticles and their supported-catalyst-based reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The mechanisms for the formation of these nanoparticles and the catalytic reduction of 4-NP are discussed. Furthermore, the parameters that need to be considered in the catalytic efficiency calculations and perspectives for future studies are also discussed. Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research.![]()
Collapse
Affiliation(s)
- Yetzin Rodriguez Mejía
- Facultad de Química, Universidad Autónoma del estado de México, Paseo Colón esq. Paseo Tollocan s/n, Toluca, Estado de México, C.P. 50120, Mexico
| | | |
Collapse
|
8
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
9
|
Singh P, Mijakovic I. Rowan Berries: A Potential Source for Green Synthesis of Extremely Monodisperse Gold and Silver Nanoparticles and Their Antimicrobial Property. Pharmaceutics 2021; 14:pharmaceutics14010082. [PMID: 35056978 PMCID: PMC8781835 DOI: 10.3390/pharmaceutics14010082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Rowanberries (Sorbus aucuparia) are omnipresent in Europe. The medicinal importance of rowanberries is widely known and corresponds to the active ingredients present in the fruits, mainly polyphenols, carotenoids, and organic acids. In the current study, we explored rowanberries for the reduction of gold and silver salts into nanoparticles. Rowanberries-mediated gold nanoparticles (RB-AuNPs) formed within 5 s at room temperature, and silver nanoparticles (RB-AgNPs) formed in 20 min at 90 °C. The produced nanoparticles were thoroughly characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), single-particle inductively coupled plasma–mass spectrometry (sp-ICP-MS), thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF). The characterization confirmed that the nanoparticles are highly monodisperse, spherical, stable over long periods, and exhibit a high negative zeta potential values. The produced RB-AuNPs and RB-AgNPs were 90–100 nm and 20–30 nm in size with a thick biological corona layer surrounding them, providing extreme stability but lowering the antimicrobial activity. The antimicrobials study of RB-AgNPs revealed that the nanoparticles have antimicrobial potential with an MBC value of 100 µg/mL against P. aeruginosa and 200 µg/mL against E. coli.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, DK-2800 Kogens Lyngby, Denmark
- Correspondence: (P.S.); (I.M.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, DK-2800 Kogens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence: (P.S.); (I.M.)
| |
Collapse
|
10
|
Roychoudhury P, Golubeva A, Dąbek P, Gloc M, Dobrucka R, Kurzydłowski K, Witkowski A. Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7284. [PMID: 34885439 PMCID: PMC8658300 DOI: 10.3390/ma14237284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
Fabrication of flower-like nanostructures are gaining attention because of their high surface/volume ratio and extensive adsorption capacity. In the present investigation, flower-shaped, autofluorescent silver-silica (Ag-SiO2) hybrid nanoparticles have been fabricated exploiting diatoms as a source of nanosilica. Two different species of Gedaniella including G. flavovirens and G. mutabilis showed their efficacy in synthesizing fluorescent Ag-SiO2 nanoflowers (NFs) and nanospheres (NSs) against 9 mM silver nitrate solution, respectively. The biogenic nanoconjugate (Ag-SiO2) was characterized by Uv-vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), scanning (SEM) and transmission (TEM) electron microscopy. Production of Ag-SiO2 hybrid nanoparticle was confirmed by observing both Ag and Si signals from a single nanoparticle in an EDS study. The broad and single absorption band at ~420 nm in Uv-vis spectroscopy confirmed proper miscibility and production of hybrid nanoparticles. The Ag-SiO2 nanohybrids revealed autofluorescent property under the blue light region (excitation ~450-490 nm). SEM images of particles synthesized by G. flavovirens revealed the production of microscopic flower shaped Ag-SiO2 particles with several layers of petals. A TEM study confirmed that the synthesized Ag-SiO2 NFs are variable in size with 100-500 nm in diameter. Decolorization of methylene blue after exposure to Ag-SiO2 particles confirmed catalytic activity of synthesized nanostructures. This eco-friendly method provides a new dimension in nanobiotechnology for biogenesis of such hierarchical nanostructure in a cost-effective way.
Collapse
Affiliation(s)
- Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (M.G.); or (R.D.)
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland; (M.G.); or (R.D.)
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Krzysztof Kurzydłowski
- Faculty of Mechanical Engineering, Białystok University of Technology, Wiejska 45c, 15-351 Białystok, Poland;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (A.G.); (P.D.); (A.W.)
| |
Collapse
|
11
|
Prospects of using bioactive compounds in nanomaterials surface decoration and their biomedical purposes. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kumar B, Smita K, Borovskikh P, Shchegolkov A, Debut A, Cumbal L. Spectroscopic and morphological characterization of Nephelium lappaceum peel extract synthesized gold nanoflowers and its catalytic activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
14
|
Agrawal K, Gupta VK, Verma P. Microbial cell factories a new dimension in bio-nanotechnology: exploring the robustness of nature. Crit Rev Microbiol 2021; 48:397-427. [PMID: 34555291 DOI: 10.1080/1040841x.2021.1977779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bio-based nanotechnology has its existence in biological dimensions e.g. microbial cell factories (bacteria, fungi. algae, yeast, cyanobacteria) plants, and biopolymers. They provide multipurpose biological platforms to supply well-designed materials for diverse nano-biotechnological applications. The "green or bio-based synthesis of nanoparticles (NPs)" has witnessed a research outburst in the past decade. The bio-based synthesis of NPs using microbial cell factories is a benign process and requires mild conditions for the synthesis with end products being less/non-toxic. As a result, its application has extended in multitudinous industries including environment, cosmetics, and pharmaceutical. Thus, the present review summarizes all the significant aspects of nanotechnology and the reason to switch towards the bio-based synthesis of NPs using microbial cell factories. It consists of a detailed description of the bio-based methods employed for the synthesis and classification of NPs. Also, a comprehensive study on the application of bio-based NPs in the various industrial and biotechnological domains has been discussed. The limitation and its solution would help identify the applicability of NPs to "identified and unidentified" sectors.
Collapse
Affiliation(s)
- Komal Agrawal
- Department of Microbiology, Bioprocess and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food, Scotland's Rural College (SRUC), Edinburgh, UK.,Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Pradeep Verma
- Department of Microbiology, Bioprocess and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
15
|
Amina SJ, Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int J Nanomedicine 2020; 15:9823-9857. [PMID: 33324054 PMCID: PMC7732174 DOI: 10.2147/ijn.s279094] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metal nanoparticles are being extensively used in biomedical fields due to their small size-to-volume ratio and extensive thermal stability. Gold nanoparticles (AuNPs) are an obvious choice for biomedical applications due to their amenability of synthesis, stabilization, and functionalization, low toxicity, and ease of detection. In the past few decades, various chemical methods have been used for the synthesis of AuNPs, but recently, newer environment friendly green approaches for the synthesis of AuNPs have gained attention. AuNPs can be conjugated with a number of functionalizing moieties including ligands, therapeutic agents, DNA, amino acids, proteins, peptides, and oligonucleotides. Recently, studies have shown that gold nanoparticles not only infiltrate the blood vessels to reach the site of tumor but also enter inside the organelles, suggesting that they can be employed as effective drug carriers. Moreover, after reaching their target site, gold nanoparticles can release their payload upon an external or internal stimulus. This review focuses on recent advances in various methods of synthesis of AuNPs. In addition, strategies of functionalization and mechanisms of application of AuNPs in drug and bio-macromolecule delivery and release of payloads at target site are comprehensively discussed.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX77204, USA
| |
Collapse
|
16
|
Lim K, Macazo FC, Scholes C, Chen H, Sumampong K, Minteer SD. Elucidating the Mechanism behind the Bionanomanufacturing of Gold Nanoparticles Using Bacillus subtilis. ACS APPLIED BIO MATERIALS 2020; 3:3859-3867. [DOI: 10.1021/acsabm.0c00420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Florika C. Macazo
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Connor Scholes
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Kirsten Sumampong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah84112, United States
| |
Collapse
|
17
|
Golhani DK, Khare A, Burra GK, Jain VK, Rao Mokka J. Microbes induced biofabrication of nanoparticles: a review. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1731539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Ayush Khare
- Department of Physics, National Institute of Technology, Raipur, India
| | - Gopal Krishna Burra
- SoS in Electronics and Optoelectronics, Pt. Ravishankar Shukla University, Raipur, India
| | - Vikas Kumar Jain
- Department of Chemistry, Government Engineering College, Raipur, India
| | | |
Collapse
|
18
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Sreedharan SM, Singh SP, Singh R. Flower Shaped Gold Nanoparticles: Biogenic Synthesis Strategies and Characterization. Indian J Microbiol 2019; 59:321-327. [PMID: 31388209 PMCID: PMC6646626 DOI: 10.1007/s12088-019-00804-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 11/30/2022] Open
Abstract
Microbes can serve as mediators for the fabrication of complicated nano-structures, obviating the tedious and time-consuming methods of synthesis. The shape of a nanoparticle has a very prominent role in defining the functionality in prospective arenas. So, the flower shaped nanoparticles are in focus nowadays due to their enhanced electrocatalytic and optical properties as compared to the spherical ones. We present the biosynthesis of flower shaped gold nanoparticles by Bacillus subtilis RSB64 and process parameters optimization using central composite design. The two well-separated scattering spectra showing absorption peaks at 540 nm and 750 nm indicate the presence of anisotropic gold nanoparticles and the results were corroborated by transmission electron microscopy analysis. The presence of gold nanoparticles was further confirmed by energy dispersive X-ray studies. The functional groups responsible for the stability of gold nanoparticles were predicted by Fourier transform infrared spectroscopy. The gold nanoparticles biosynthesis were collective effects of three experimental process parameters viz pH, temperature and precursor concentration. These three parameters were statistically optimized wherein pH 11.0, substrate concentration 1:1 (v/v) and temperature of 50 °C resulted in the synthesis of stable flower shaped gold nanoparticles of 50 nm size. The results indicated the tailored biosynthesis of gold nanoparticles with a flower like morphology by multi process parameter analysis to finalize robust conditions for the synthesis using B. subtilis RSB64. These gold nanoflowers demonstrate increased surface area efficiency/reactivity and could be employed for sustained and controlled delivery of drugs.
Collapse
Affiliation(s)
- Smitha Mony Sreedharan
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Surinder Pal Singh
- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
20
|
Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrobial Effects of Biogenic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1009. [PMID: 30563095 PMCID: PMC6315689 DOI: 10.3390/nano8121009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Abhroop Garg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - V R S S Mokkapati
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| |
Collapse
|
21
|
Shende P, Kasture P, Gaud RS. Nanoflowers: the future trend of nanotechnology for multi-applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:413-422. [PMID: 29361844 DOI: 10.1080/21691401.2018.1428812] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanoflowers are a newly developed class of nanoparticles showing structure similar to flower and gaining much attention due to their simple method of preparation, high stability and enhance efficiency. This article focuses on advantages, disadvantages, method of synthesis, types and applications of nanoflowers with futuristic approaches. The applications of nanoflower include its use as a biosensor for quick and precise detection of conditions like diabetes, Parkinsonism, Alzheimer, food infection, etc. Nanoflowers have been revealed for site-specific action and controlled delivery of drugs. The extended applications of nanoflowers cover purification of enzyme, removal of dye and heavy metal from water, gas-sensing using nickel oxide. Recent investigation shows 3 D structure of nanoflowers for enhancing surface sensitivity using Raman spectroscopy. This nanoflower system will act as a smart material in the near future due to high surface-to-volume ratio and enhance adsorption efficiency on its petals.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS , Vile Parle (W) , Mumbai , India
| | - Pooja Kasture
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS , Vile Parle (W) , Mumbai , India
| | - R S Gaud
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS , Vile Parle (W) , Mumbai , India
| |
Collapse
|
22
|
Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ, Yang DC. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:2022-2032. [PMID: 29190154 DOI: 10.1080/21691401.2017.1408117] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, green metal nanoparticles have received global attention owing to their economical synthesis, biocompatible nature, widespread biomedical and environmental applications. Current study demonstrates a sustainable approach for the green synthesis of silver nanoparticles (P-AgNPs) and gold nanoparticles (P-AuNPs) from P. serrulata fresh fruit extract. The silver and gold nanoparticles were synthesized in a very rapid, efficient and facile manner, within 50 min and 30 s at 80 °C, respectively. The nanoparticles were characterized by using visual observation, UV-Vis, FE-TEM, EDX, elemental mapping, FT-IR, XRD and DLS, which confirmed the formation of monodispersed, crystalline and stable nanoparticles. Further, we explored these nanoparticles for anti-inflammatory activity through inhibition of downstream NF-κB activation in macrophages (RAW264.7). We demonstrated that the nanoparticles reduced expression of inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PEG2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was attenuated in lipopolysaccharide (LPS)-induced RAW264.7 cells. Furthermore, nanoparticles significantly suppressed LPS-induced activation of NF-κB signalling pathway via p38 MAPK in RAW 264.7 cells. To the best of our knowledge, this is the first report on the efficient green synthesis of P-AgNPs and P-AuNPs using P. serrulata fresh fruit extract and its in vitro anti-inflammatory effects. Collectively, our results suggest that P. serrulata fresh fruit extract is a green resource for the eco-friendly synthesis of P-AgNPs and P-AuNPs, which further can be utilized as a novel therapeutic agent for prevention and cure of inflammation due to their biocompatible nature.
Collapse
Affiliation(s)
- Priyanka Singh
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Sungeun Ahn
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Jong-Pyo Kang
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Soshnikova Veronika
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Yue Huo
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Hina Singh
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Mohan Chokkaligam
- b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Mohamed El-Agamy Farh
- b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Verónica Castro Aceituno
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Deok-Chun Yang
- a Department of Oriental Medicine Biotechnology, Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| |
Collapse
|
23
|
Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:250-257. [PMID: 28601037 DOI: 10.1016/j.jphotobiol.2017.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
In the current work, cell-free extracts of four strains of non-pathogenic Enterococcus species of food origin, were studied for the green synthesis of gold nanoparticles (AuNPs), and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The AuNPs were evaluated for their Anopheles gambiae larvicidal, dye degradation, antioxidant and thrombolytic activities. The blue-black colloidal AuNPs which absorbed maximally at 549-552nm were nearly spherical in shape, and crystalline in nature with size of 8-50nm. The EDX spectra showed formation of AuNPs to the tune of 89-94%. The prominent FTIR peaks obtained at 3251-3410, 2088 and 1641-1643cm-1 alluded to the fact that proteins were involved in the biofabrication and capping of AuNPs. AuNPs degraded methylene blue and malachite green by 24.3-57.6%, and 88.85-97.36% respectively in 24h, whereas at 12h, larvicidal activities with LC50 of 21.28-42.33μg/ml were obtained. DPPH scavenging activities of 33.24-51.47% were obtained for the biosynthesized AuNPs. The AuNPs prevented coagulation of blood and also achieved 9.4-94.6% lysis of blood clot showing potential nanomedical applications. This study has presented an eco-friendly and economical synthesis of AuNPs by non-pathogenic strains of Enterococcus species for various nanobiotechnological applications.
Collapse
Affiliation(s)
- Iyabo Christianah Oladipo
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria.
| | - Joseph Adetunji Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Tesleem Babatunde Asafa
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Akeem Akinboro
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Tolulope Oluyomi Oluyide
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Oluwatoyin Rebecca Atanda
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| |
Collapse
|
24
|
Singh P, Kim YJ, Singh H, Ahn S, Castro-Aceituno V, Yang DC. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies. Int J Nanomedicine 2017; 12:4073-4084. [PMID: 28603419 PMCID: PMC5457120 DOI: 10.2147/ijn.s125154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study investigates a simple and convenient one-step procedure for the preparation of bovine serum albumin (BSA)-Rh2 nanoparticles (NPs) at room temperature. In this work, ginsenoside Rh2 was entrapped within the BSA protein to form BSA-Rh2 NPs to enhance the aqueous solubility, stability, and therapeutic efficacy of Rh2. The physiochemical characterization by high-performance liquid chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy, field emission transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis confirmed that the prepared BSA-Rh2 NPs were spherical, highly monodispersed, and stable in aqueous systems. In addition, the stability of NPs in terms of different time intervals, pHs, and temperatures (20°C–700°C) was analyzed. The results obtained with different pHs showed that the synthesized BSA-Rh2 NPs were stable in the physiological buffer (pH 7.4) for up to 8 days, but degraded under acidic conditions (pH 5.0) representing the pH inside tumor cells. Furthermore, comparative analysis of the water solubility of BSA-Rh2 NPs and standard Rh2 showed that the BSA nanocarrier enhanced the water solubility of Rh2. Moreover, in vitro cytotoxicity assays including cell viability assays and morphological analyses revealed that Rh2-entrapped BSA NPs, unlike the free Rh2, demonstrated better in vitro cell viability in HaCaT skin cell lines and that BSA enhanced the anticancer effect of Rh2 in A549 lung cell and HT29 colon cancer cell lines. Additionally, anti-inflammatory assay of BSA-Rh2 NPs and standard Rh2 performed using RAW264.7 cells revealed decreased lipopolysaccharide-induced nitric oxide production by BSA-Rh2 NPs. Collectively, the present study suggests that BSA can significantly enhance the therapeutic behavior of Rh2 by improving its solubility and stability in aqueous systems, and hence, BSA-Rh2 NPs may potentially be used as a ginsenoside delivery vehicle in cancer and inflammatory cell lines.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank.,Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Yeon Ju Kim
- Department of Oriental Medicine Biotechnology, Ginseng Bank
| | - Hina Singh
- Department of Oriental Medicine Biotechnology, Ginseng Bank
| | - Sungeun Ahn
- Department of Oriental Medicine Biotechnology, Ginseng Bank
| | | | - Deok Chun Yang
- Department of Oriental Medicine Biotechnology, Ginseng Bank.,Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
25
|
Singh P, Singh H, Ahn S, Castro-Aceituno V, Jiménez Z, Simu SY, Kim YJ, Yang DC. Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1415-1424. [PMID: 27855495 DOI: 10.1080/21691401.2016.1243547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previously, we showed the rapid and eco-friendly synthesis of gold and silver nanoparticles within 3 and 45 min by fresh leaves extract of herbal medicinal plant Panax ginseng. In addition, we characterized the nanoparticles in terms of shape, size, morphology and stability by FE-TEM, EDX, elemental mapping, SEAD, XRD and particles size analysis. In addition of this, we showed their antimicrobial, anti-coagulant, and biofilm inhibition activity of nanoparticles. Continuing our previous study, here we highlight the further characterization and biomedical applications of P. ginseng leaf-mediated gold and silver nanoparticles. We characterized the nanoparticles further in terms of active functional group and capping layer, surface charge, and temperature stability. Based on these factors, we explored the nanoparticles for antioxidant efficacy, biocompatibility in HaCaT cells, 3T3-L1 pre-adipocytes cells, for anticancer efficacy in A549 lung cancer and B16BL6 skin melenoma cancer cell lines and for anti-inflammation efficacy in RAW 264.7 cell lines. Based on our findings, we suggest that the P. ginseng-mediated gold nanoparticles have high antioxidant activity and highly biocompatibility in HaCaT cells, 3T3-L1 pre-adipocytes cells, RAW 264.7 cells lines and could be considered for future drug delivery carriers. The silver nanoparticles also showed high potent antioxidant efficacy, additionally it showed high anticancer effect in A549 lung cancer and B16BL6 skin melenoma cancer cell lines as compared to precursor salts. Moreover, both gold and silver nanoparticles have anti-inflammatory efficacies in RAW 264.7 cells. Thus, the study may provide useful insights of P. ginseng leaves extract-mediated biocompatible gold and silver nanoparticles and improving their applicability in designing nanoparticles carrier systems for drug delivery applications.
Collapse
Affiliation(s)
- Priyanka Singh
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology College of life science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Hina Singh
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Sungeun Ahn
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Verónica Castro-Aceituno
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Zuly Jiménez
- b Graduate School of Biotechnology College of life science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Shakina Yesmin Simu
- b Graduate School of Biotechnology College of life science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| | - Deok Chun Yang
- a Department of Oriental Medicine Biotechnology , Ginseng Bank College of Life Science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea.,b Graduate School of Biotechnology College of life science, Kyung Hee University , Yongin-si , Gyeonggi-do , Republic of Korea
| |
Collapse
|
26
|
Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol 2016; 34:588-599. [DOI: 10.1016/j.tibtech.2016.02.006] [Citation(s) in RCA: 811] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/28/2022]
|
27
|
Wang C, Singh P, Kim YJ, Mathiyalagan R, Myagmarjav D, Wang D, Jin CG, Yang DC. Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1714-21. [PMID: 26597594 DOI: 10.3109/21691401.2015.1089253] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various microorganisms were found to be cable of synthesizing gold and silver nanoparticles when gold and silver salts were supplied in the reaction system. The main objective of this study was to evaluate the extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505]. The biosynthesized gold and silver nanoparticles were characterized by ultraviolet-visible spectroscopy (UV-Vis), field emission transmission electron micrograph (FE-TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and dynamic light scattering (DLS). Moreover, the nanoparticles were evaluated for antimicrobial potential against various pathogenic microorganisms such as Vibrio parahaemolyticus [ATCC 33844], Salmonella enterica [ATCC 13076], Staphylococcus aureus [ATCC 6538], Bacillus anthracis [NCTC 10340], Bacillus cereus [ATCC 14579], Escherichia coli [ATCC 10798], and Candida albicans [KACC 30062]. The silver nanoparticles were found as a potent antimicrobial agent whereas gold nanoparticles not showed any ability. Therefore, the current study describes the simple, green, and extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505].
Collapse
Affiliation(s)
- Chao Wang
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and
| | - Priyanka Singh
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and
| | - Yeon Ju Kim
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and
| | - Ramya Mathiyalagan
- b Graduate School of Biotechnology , College of Life Sciences, Kyung Hee University , Republic of Korea
| | - Davaajargal Myagmarjav
- b Graduate School of Biotechnology , College of Life Sciences, Kyung Hee University , Republic of Korea
| | - Dandan Wang
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and
| | - Chi-Gyu Jin
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and
| | - Deok Chun Yang
- a Department of Oriental Medicine Biotechnology and Ginseng Bank , College of Life Sciences, Kyung Hee University , Yongin , Republic of Korea and.,b Graduate School of Biotechnology , College of Life Sciences, Kyung Hee University , Republic of Korea
| |
Collapse
|
28
|
Velmurugan P, Park JH, Lee SM, Jang JS, Yi YJ, Han SS, Lee SH, Cho KM, Cho M, Oh BT. Phytofabrication of bioinspired zinc oxide nanocrystals for biomedical application. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015. [DOI: 10.3109/21691401.2015.1058811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Palanivel Velmurugan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jum-Suk Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Young-Joo Yi
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Sub Han
- Department of Forest Environment Science, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, South Korea
| | - Sang-Hyun Lee
- Department of Forest Environment Science, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, South Korea
| | - Kwang-Min Cho
- Research Center of bioactive materials, Chonbuk National University, Chonju, Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk, South Korea
| |
Collapse
|