1
|
Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr Polym 2023; 310:120732. [PMID: 36925264 DOI: 10.1016/j.carbpol.2023.120732] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.
Collapse
|
2
|
Kirk JR, Smyth D, Dueck WF. A new paradigm of hearing loss and preservation with cochlear implants: Learnings from fundamental studies and clinical research. Hear Res 2023; 433:108769. [PMID: 37120894 DOI: 10.1016/j.heares.2023.108769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 02/18/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
In 2010 Cochlear initiated a coordinated preclinical research program to identify the factors and underlying mechanisms of acoustic hearing loss following cochlear implantation and device use. At its inception the program was structured around several major hypotheses implicated in the loss of acoustic hearing. The understanding of causes evolved over the course of the program, leading to an increased appreciation of the role of the biological response in post-implant hearing loss. A systematic approach was developed which mapped the cochlear implant journey along a timeline that considers all events in an individual's hearing history. By evaluating the available data in this context, rather than by discrete hypothesis testing, causative and associated factors may be more readily detected. This approach presents opportunities for more effective research management and may aid in identifying new prospects for intervention. Many of the outcomes of the research program apply beyond preservation of acoustic hearing to factors important to overall cochlear health and considerations for future therapies.
Collapse
Affiliation(s)
- Jonathon R Kirk
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia.
| | - Daniel Smyth
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia
| | - Wolfram F Dueck
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW 2109, Australia
| |
Collapse
|
3
|
Abolpour Moshizi S, Pastras CJ, Sharma R, Parvez Mahmud MA, Ryan R, Razmjou A, Asadnia M. Recent advancements in bioelectronic devices to interface with the peripheral vestibular system. Biosens Bioelectron 2022; 214:114521. [PMID: 35820254 DOI: 10.1016/j.bios.2022.114521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Balance disorders affect approximately 30% of the population throughout their lives and result in debilitating symptoms, such as spontaneous vertigo, nystagmus, and oscillopsia. The main cause of balance disorders is peripheral vestibular dysfunction, which may occur as a result of hair cell loss, neural dysfunction, or mechanical (and morphological) abnormality. The most common cause of vestibular dysfunction is arguably vestibular hair cell damage, which can result from an array of factors, such as ototoxicity, trauma, genetics, and ageing. One promising therapy is the vestibular prosthesis, which leverages the success of the cochlear implant, and endeavours to electrically integrate the primary vestibular afferents with the vestibular scene. Other translational approaches of interest include stem cell regeneration and gene therapies, which aim to restore or modify inner ear receptor function. However, both of these techniques are in their infancy and are currently undergoing further characterization and development in the laboratory, using animal models. Another promising translational avenue to treating vestibular hair cell dysfunction is the potential development of artificial biocompatible hair cell sensors, aiming to replicate functional hair cells and generate synthetic 'receptor potentials' for sensory coding of vestibular stimuli to the brain. Recently, artificial hair cell sensors have demonstrated significant promise, with improvements in their output, such as sensitivity and frequency selectivity. This article reviews the history and current state of bioelectronic devices to interface with the labyrinth, spanning the vestibular implant and artificial hair cell sensors.
Collapse
Affiliation(s)
| | - Christopher John Pastras
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, NSW, Australia
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Rachel Ryan
- College of Public Health, The Ohio State University, Columbus, OH, 43210, United States
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, Australia; School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Gentilin E, Cani A, Simoni E, Chicca M, Di Paolo ML, Martini A, Astolfi L. Hydrogen peroxide toxicity on auditory cells: An in vitro study. Chem Biol Interact 2021; 345:109575. [PMID: 34228970 DOI: 10.1016/j.cbi.2021.109575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
In recent decades, interest has increased in the role of reactive oxygen species (ROS) in health and disease. The ROS are key causative factors in several hearing loss pathologies including ototoxicity, noise trauma, cochlear ageing and ischemic injury. In order to investigate ROS effects on inner ear cells and counteract them, we developed an in vitro model of oxidative stress by exposing the inner ear cell line OC-k3 to hydrogen peroxide (H2O2) at concentrations able to affect in vivo cellular components but allowing cell survival. The treatment with high concentrations (20 and 30 μM) resulted in reduction of cell viability, activation of apoptosis/necrosis and alteration of morphology, cell cycle progression and antioxidant defences. The ROS effects in inner ear cells are difficult to assess in vivo. Organocultures may provide preservation of tissue architecture but involve ethical issues and can be used only for a limited time. An in vitro model that could be commercially available and easy to handle is necessary to investigate inner ear oxidative stress and the ways to counteract it. The OC-k3 line is a suitable in vitro model to study ROS effects on inner ear cells because the observed cell alterations and damages were similar to those reported in studies investigating ROS effects of ototoxic drugs, noise trauma and cochlear ageing.
Collapse
Affiliation(s)
- Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Alice Cani
- Department of Woman and Children's Health, University of Padua, Padua, Italy.
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | - Alessandro Martini
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| |
Collapse
|
5
|
Simoni E, Gentilin E, Candito M, Borile G, Romanato F, Chicca M, Nordio S, Aspidistria M, Martini A, Cazzador D, Astolfi L. Immune Response After Cochlear Implantation. Front Neurol 2020; 11:341. [PMID: 32477241 PMCID: PMC7240074 DOI: 10.3389/fneur.2020.00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
A cochlear implant (CI) is an electronic device that enables hearing recovery in patients with severe to profound hearing loss. Although CIs are a successful treatment for profound hearing impairment, their effectivity may be improved by reducing damages associated with insertion of electrodes in the cochlea, thus preserving residual hearing ability. Inner ear trauma leads to inflammatory reactions altering cochlear homeostasis and reducing post-operative audiological performances and electroacoustic stimulation. Strategies to preserve residual hearing ability led to the development of medicated devices to minimize CI-induced cochlear injury. Dexamethasone-eluting electrodes recently showed positive outcomes. In previous studies by our research group, intratympanic release of dexamethasone for 14 days was able to preserve residual hearing from CI insertion trauma in a Guinea pig model. Long-term effects of dexamethasone-eluting electrodes were therefore evaluated in the same animal model. Seven Guinea pigs were bilaterally implanted with medicated rods and four were implanted with non-eluting ones. Hearing threshold audiograms were acquired prior to implantation and up to 60 days by recording compound action potentials. For each sample, we examined the amount of bone and fibrous connective tissue grown within the scala tympani in the basal turn of the cochlea, the cochleostomy healing, the neuronal density, and the correlation between electrophysiological parameters and histological results. Detection of tumor necrosis factor alpha, interleukin-6, and foreign body giant cells showed that long-term electrode implantation was not associated with an ongoing inflammation. Growth of bone and fibrous connective tissue around rods induced by CI was reduced in the scala tympani by dexamethasone release. For cochleostomy sealing, dexamethasone-treated animals showed less bone tissue growth than negative. Dexamethasone did not affect cell density in the spiral ganglion. Overall, these results support the use of dexamethasone as anti-inflammatory additive for eluting electrodes able to protect the cochlea from CI insertion trauma.
Collapse
Affiliation(s)
- Edi Simoni
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy.,Section of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Mariarita Candito
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Laboratory for Nanofabrication of Nanodevices, Padua, Italy
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy.,Laboratory for Nanofabrication of Nanodevices, Padua, Italy
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sara Nordio
- Fondazione Ospedale San Camillo IRCCS, Venice, Italy
| | - Marta Aspidistria
- Department of Statistical Sciences, University of Padua, Padova, Italy
| | - Alessandro Martini
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Diego Cazzador
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy.,Section of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.,Otorhinolaryngology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| |
Collapse
|
6
|
Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases 2020; 15:031004. [PMID: 32434336 DOI: 10.1116/6.0000067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensorineural hearing loss (SNHL) affects the inner ear compartment and can be caused by different factors. Usually, the lack, death, or malfunction of sensory cells deputed to transduction of mechanic-into-electric signals leads to SNHL. To date, the therapeutic option for patients impaired by severe or profound SNHL is the cochlear implant (CI), a high-tech electronic device replacing the entire cochlear function. Piezoelectric materials have catalyzed attention to stimulate the auditory neurons by simply mimicking the function of the cochlear sensory epithelium. In this study, the authors investigated lithium niobate (LiNbO3) as a potential candidate material for next generation CIs. LiNbO3 nanoparticles resulted otocompatible with inner ear cells in vitro, had a pronounced immunomodulatory activity, enhanced human beta-defensin in epithelial cells, and showed direct antibacterial activity against P. aeruginosa. Moreover, LiNbO3 nanoparticles were incorporated into poly(vinylidene fluoride-trifluoro ethylene) fibers via electrospinning, which enhanced the piezoelectric response. Finally, the resulting fibrous composite structures support human neural-like cell growth in vitro, thus showing promising features to be used in new inner ear devices.
Collapse
|
7
|
Simoni E, Valente F, Boge L, Eriksson M, Gentilin E, Candito M, Cazzador D, Astolfi L. Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. Int J Pharm 2019; 572:118788. [DOI: 10.1016/j.ijpharm.2019.118788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
|
8
|
Polydimethylsiloxanes biocompatibility in PC12 neuronal cell line. Colloids Surf B Biointerfaces 2019; 173:400-406. [DOI: 10.1016/j.colsurfb.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/26/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023]
|
9
|
Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, Liu Z, Jin Y, Zou Y, An Z, Zhang W, Wang X, Jiang W, Xu Z, Wang ZL, Li Z, Zhang H. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. NANO LETTERS 2016; 16:6042-6051. [PMID: 27607151 DOI: 10.1021/acs.nanolett.6b01968] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Operation time of implantable electronic devices is largely constrained by the lifetime of batteries, which have to be replaced periodically by surgical procedures once exhausted, causing physical and mental suffering to patients and increasing healthcare costs. Besides the efficient scavenging of the mechanical energy of internal organs, this study proposes a self-powered, flexible, and one-stop implantable triboelectric active sensor (iTEAS) that can provide continuous monitoring of multiple physiological and pathological signs. As demonstrated in human-scale animals, the device can monitor heart rates, reaching an accuracy of ∼99%. Cardiac arrhythmias such as atrial fibrillation and ventricular premature contraction can be detected in real-time. Furthermore, a novel method of monitoring respiratory rates and phases is established by analyzing variations of the output peaks of the iTEAS. Blood pressure can be independently estimated and the velocity of blood flow calculated with the aid of a separate arterial pressure catheter. With the core-shell packaging strategy, monitoring functionality remains excellent during 72 h after closure of the chest. The in vivo biocompatibility of the device is examined after 2 weeks of implantation, proving suitability for practical use. As a multifunctional biomedical monitor that is exempt from needing an external power supply, the proposed iTEAS holds great potential in the future of the healthcare industry.
Collapse
Affiliation(s)
- Ye Ma
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Qiang Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Yang Liu
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Bojin Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Xiang Xue
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Weiping Ji
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Zhuo Liu
- School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, PR China
| | - Yiming Jin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Yang Zou
- School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, PR China
| | - Zhao An
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Wei Zhang
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Xinxin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Wen Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Hao Zhang
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| |
Collapse
|