Zhang Y, Huang W, Jiang J, Xie J, Xu C, Wang C, Yin L, Yang L, Zhou K, Chen P, Sung KP. Influence of TNF-α and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts.
Knee Surg Sports Traumatol Arthrosc 2014;
22:1997-2006. [PMID:
23377799 DOI:
10.1007/s00167-013-2425-z]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/21/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE
It was reported that not only ACL but also the synovium may be the major regulator of matrix metalloproteinases (MMPs) in synovial fluids after ACL injury. In order to further confirm whether synovium is capable of regulating the microenvironment in the process of ACL injury, the complicated microenvironment of joint cavity after ACL injury was mimicked and the combined effects of mechanical injury and inflammatory factor [tumour necrosis factor-α (TNF-α)] on expressions of lysyl oxidases (LOXs) and MMPs in synovial fibroblasts derived from normal human synovium were studied.
METHODS
Human normal knee joint synovial fibroblasts were stimulated for 1-6 h with mechanical stretch and inflammatory factor (TNF-α). Total RNA was harvested, reverse transcribed and assessed by real-time polymerase chain reaction for the expression of LOXs and MMP-1, 2, 3 messenger RNAs. MMP-2 activity was assayed from the collected culture media samples using zymography.
RESULTS
Compared to control group, our results showed that 6% physiological stretch increased MMP-2 and LOXs (except LOXL-3), decreased MMP-1 and MMP-3; injurious stretch (12%) decreased LOXs (except LOXL-2)and increased MMP-1, 2 and 3; the combination of injurious stretch and TNF-α decreased LOXs and increased MMP-1, 2 and 3 in synovial fibroblasts in a synergistical manner.
CONCLUSION
This study demonstrated that combination of mechanical injury and inflammatory factors up-regulated the expressions of MMPs and down-regulated the expressions of LOXs in synovial fibroblasts, eventually alter the balance of tissue healing. Thus, synovium may be involved in regulating the microenvironment of joint cavity. Based on the mechanism, early interventions to inhibit the production of MMPs or promote the production of LOXs in the synovial fibroblasts should be performed to facilitate the healing of tissue.
Collapse