Chen Y, Song J, Wang S, Liu W. Cationic Modified PVA Hydrogels Provide Low Friction and Excellent Mechanical Properties for Potential Cartilage and Orthopedic Applications.
Macromol Biosci 2023;
23:e2200275. [PMID:
36254859 DOI:
10.1002/mabi.202200275]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Indexed: 01/19/2023]
Abstract
Poly(vinyl alcohol) (PVA) hydrogel is a promising candidate for articular cartilage repair yet restrained by its mechanical strength and tribological property. Current work reports a newly designed PVA-based hydrogel modified by glycerol (g), bacterial cellulose (BC), and a cationic polymer poly (diallyl dimethylammonium chloride) (PDMDAAC), which is a novel cationic strengthening choice. The resultant PVA-g-BC-PDMDAAC hydrogel proves the effectiveness of this modification scheme, with a confined compressive modulus of 19.56 MPa and a friction coefficient of 0.057 at a joint-equivalent load and low sliding speed. The water content, swelling property, and creep behavior of this hydrogel are also within a cartilage-mimetic range. The properties of PVA-based hydrogels before PDMDAAC addition are likewise studied as a cross-reference. Besides, PDMDAAC-modified PVA hydrogel realizes ideal mechanical and lubrication properties with a relatively low PVA concentration (10 wt.%) and facile fabrication process, which lays a foundation for mass production and marketization in the future.
Collapse