1
|
Li X, Zhang L, Li Y, Liu L, Wang R, Zhou H, Zhang D. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21711-21718. [PMID: 39365841 DOI: 10.1021/acs.langmuir.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Silicone surfactants are increasingly used in the industrial field due to their advantages such as low surface energy, stable performance, and good biocompatibility. However, many polyether-modified silicone surfactants' foam stability and easy hydrolysis in non-neutral aqueous systems limit their application in many fields. In this article, the decynediol-ethoxylate chain segment was grafted onto heptamethyltrisiloxane to synthesize a modified trisiloxane surfactant (G2). FT-IR and 1H NMR characterized its structure. Its surface activity, aggregation behavior, and wetting and spreading properties in water were studied by using instruments such as a surface tension meter, transmission electron microscope (TEM), dynamic light scattering (DLS), and contact angle tester. G2 can reduce the surface tension of water to 19.24 mN/m at a lower CMC (40.44 mg/L), and the foaming properties and hydrolysis stability of decynediol-ethoxylate-modified trisiloxane (G2) in water are significantly improved compared with allyl-polyoxyethylene-ether-modified trisiloxane (X5).
Collapse
Affiliation(s)
- Xinze Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ling Zhang
- State Key Laboratory of Mesoscience and Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Li
- State Key Laboratory of Mesoscience and Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Longxin Liu
- China University of Mining & Technology, Beijing 100083, China
| | - Ruitao Wang
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo 315201, China
| | - Hualei Zhou
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Donghai Zhang
- State Key Laboratory of Mesoscience and Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Zhao W, Cheng Y, Pu J, Su L, Wang N, Cao Y, Liu L. Research Progress in Structure Synthesis, Properties, and Applications of Small-Molecule Silicone Surfactants. Top Curr Chem (Cham) 2024; 382:11. [PMID: 38589726 DOI: 10.1007/s41061-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, "umbrella" structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.
Collapse
Affiliation(s)
- Wenhui Zhao
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yuqiao Cheng
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Jiaqi Pu
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Leigang Su
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yinhao Cao
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Lijun Liu
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
3
|
Tan J, Xie J, Zhang YF. Synthesis and Micellization of Carbosilane Sulfonate Surfactants with Short Alkyl Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15997-16005. [PMID: 37909176 DOI: 10.1021/acs.langmuir.3c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Carbosilane surfactants, consisting of carbosilane as a hydrophobic group linked to hydrophilic groups, are one kind of silicone surfactants. In this paper, a series of carbosilane sulfonate surfactants with short alkyl chains (Cn-Si2C-SO3Na (n = 1-6)), Me-Si2C-SO3Na, Et-Si2C-SO3Na, Pr-Si2C-SO3Na, Bu-Si2C-SO3Na, Pen-Si2C-SO3Na, and Hex-Si2C-SO3Na, were prepared and characterized by 29 Si NMR, 1H NMR, and FT-IR spectroscopies. The influence of the alkyl chain length on their micellization was studied using surface tension, dynamic light scattering, conductivity, and transmission electron microscopy. The CMC value decreases with increasing length of the short alkyl group. The γCMC value of Cn-Si2C-SO3Na (n = 1-6) increases as the alkyl chain increases from methyl to propyl, while the γCMC value gradually decreases as the alkyl chain increases from propyl to hexyl. The larger and rigid tetramethyldicarbosilane group functioned synergistically with a short alkyl chain, resulting in carbosilane sulfonate surfactants adsorbing at the air/water interface with a rugby ball shape; accordingly, the Amin values of the investigated carbosilane sulfonate surfactants increase with increasing length of the alkyl chain. The micellization process of carbosilane sulfonate surfactants is enthalpy-driven at lower temperatures and entropy-driven at high temperatures. The ΔHm0 values became more negative and ΔSm0 values more positive as the alkyl chain length increased. Aggregates in the range of 10-800 nm were observed for Cn-Si2C-SO3Na (n = 1-6) in an aqueous solution, and the hydrodynamic diameter (Dh) decreased with increasing length of the short alkyl group.
Collapse
Affiliation(s)
- Jinglin Tan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiangbin Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
4
|
Qi PY, Zhang TH, Wang N, Feng YM, Zeng D, Shao WB, Meng J, Liu LW, Jin LH, Zhang H, Zhou X, Yang S. Natural Products-Based Botanical Bactericides Discovery: Novel Abietic Acid Derivatives as Anti-Virulence Agents for Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5463-5475. [PMID: 37012216 DOI: 10.1021/acs.jafc.2c08392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The discovery of natural product-based pesticides is critical for agriculture. In this work, a series of novel tricyclic diterpenoid derivatives decorated with an amino alcohol moiety were elaborately prepared from natural abietic acid, and their antibacterial behavior was explored. Bioassay results indicated that compound C2 exhibited the most promising bioactivity (EC50 = 0.555 μg mL-1) against Xanthomonas oryzae pv. oryzae (Xoo), about 73 times higher than the effect of commercial thiodiazole copper (TC). Results of in vivo bioassays showed that compound C2 displayed significantly higher control of rice bacterial leaf blight (curative activity: 63.8%; protective activity: 58.4%) than TC (curative activity: 43.6%; protective activity: 40.8%), and their bioactivity could be improved maximally 16% by supplementing the auxiliaries. Antibacterial behavior suggested that compound C2 could suppress various virulence factors. Overall, these findings suggested that new botanical bactericide candidates could control intractable plant bacterial diseases by suppressing virulence factors.
Collapse
Affiliation(s)
- Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Na Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Xin J, Jia K, Yu L, Li H, Ning J, Zheng X, Wu H, Liu X, Huang L, Wen W. Controlling high-speed droplet splashing and superspreading behavior on anisotropic superhydrophobic leaf surfaces by ecofriendly Pseudogemini surfactants. PEST MANAGEMENT SCIENCE 2023. [PMID: 36994611 DOI: 10.1002/ps.7485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Efficient deposition of high-speed droplets on superhydrophobic leaf surfaces remains an important challenge. For anisotropic wired superhydrophobic leaf surfaces, the splashing phenomenon is especially serious because it leads to the low effective utilization of pesticides by biological targets. The lost pesticides cause serious ecological environment pollution, therefore there is an urgent need to develop a green and sustainable cost-effective strategy to achieve efficient deposition of high-speed droplets on anisotropic superhydrophobic leaf surfaces at low dosage. RESULTS One type of green pseudogemini surfactant is constructed based on fatty acids and hexamethylenediamine by electrostatic interaction to control the splashing and spreading of high-speed droplets on superhydrophobic surfaces. The formed surfactant can not only achieve complete inhibition of the bouncing of droplets, but also promote rapid spreading on superhydrophobic leaf surfaces at very low usage. The efficient deposition and superspreading phenomenon are attributed to the rapid migration and adsorption of the surfactant from the dynamic spherical micelles at the newly formed solid-liquid interface, the network-like aggregated spherical micelles, and the Marangoni effect caused by the surface tension gradient. Moreover, the surfactant shows an excellent synergistic effect with herbicides to control weeds by inhibiting droplet splashing. CONCLUSION This work provides a simpler, more effective and sustainable approach to utilize aggregated spherical micelles rather than conventional vesicles or wormlike micelles to improve the droplet deposition on superhydrophobic leaf surfaces and reduce the impact of surfactants and pesticides on the ecological environment.
Collapse
Affiliation(s)
- Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Xiaoshan Zheng
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Haifu Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Linjia Huang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| | - Wu Wen
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, P. R. China
| |
Collapse
|
6
|
Qi PY, Zhang TH, Feng YM, Wang MW, Shao WB, Zeng D, Jin LH, Wang PY, Zhou X, Yang S. Exploring an Innovative Strategy for Suppressing Bacterial Plant Disease: Excavated Novel Isopropanolamine-Tailored Pterostilbene Derivatives as Potential Antibiofilm Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4899-4911. [PMID: 35437986 DOI: 10.1021/acs.jafc.2c00590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial biofilms are the root cause of persistent and chronic phytopathogenic bacterial infections. Therefore, developing novel agrochemicals that target the biofilm of phytopathogenic bacteria has been regarded as an innovative tactic to suppress their invasive infection or decrease bacterial drug resistance. In this study, a series of natural pterostilbene (PTE) derivatives were designed, and their antibacterial potency and antibiofilm ability were assessed. Notably, compound C1 displayed excellent antibacterial potency in vitro, affording an EC50 value of 0.88 μg mL-1 against Xoo (Xanthomonas oryzae pv. oryzae). C1 could significantly reduce biofilm formation and extracellular polysaccharides (EPS). Furthermore, C1 also possessed remarkable inhibitory activity against bacterial extracellular enzymes, pathogenicity, and other virulence factors. Subsequently, pathogenicity experiments were further conducted to verify the above primary outcomes. More importantly, C1 with pesticide additives displayed excellent control efficiency. Given these promising profiles, these pterostilbene derivatives can serve as novel antibiofilm agents to suppress plant pathogenic bacteria.
Collapse
Affiliation(s)
- Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Warszyński P, Szyk-Warszyńska L, Wilk KA, Lamch Ł. Adsorption of cationic multicharged surfactants at liquid/gas interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
The Synthesis of Nonionic Hyperbranched Organosilicone Surfactant and Characterization of Its Wetting Ability. COATINGS 2020. [DOI: 10.3390/coatings11010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this research, the epoxy silicone oil and self-made hydroxyl-terminated hyperbranched polymer (HBP-OH) were used to synthesis the nonionic hyperbranched organosilicone surfactant (NHSi). The molar rate of hydroxyl groups of HBP-OH and epoxy groups of epoxy silicon oil (n-OH: n-epoxy) was adjusted from 5:1~60:1 to prepare a series of NHSi. The Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FT-IR), contact angle measuring instrument, surface tensiometer and Scanning Electron Microscope (SEM) were employed to characterize the structure and property of HBP-OH and NHSi. GPC analysis indicated that the Mn of HBP-OH was 340.5. FT-IR analysis showed that with the increase of molar rate of n-OH:n-epoxy, the peak intensity of –OH increased. The prepared NHSi was then used to prepare the water solution. The lowest surface tension of NHSi solution was 24.71 mN·m−1 when the n-OH:n-epoxy was 30:1 in the preparation process. The minimum water contact angle of waterborne polyurethane (WPU) emulsion by adding 2% of NHSi was 14.85° on the surface of glass. The wetting experiments showed that the NHSi has good wetting ability to fixed sea-island superfine fiber synthetic material.
Collapse
|
9
|
Thermodynamic Analysis of Trisiloxane Surfactant Adsorption and Aggregation Processes. Molecules 2020; 25:molecules25235669. [PMID: 33271846 PMCID: PMC7730224 DOI: 10.3390/molecules25235669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
The trisiloxane polyether surfactant (3-[3-(hydroxy)(polyethoxy)propyl]-1,1,1,3,5,5,5 -heptamethyltrisiloxane) (TS-EO12) was successfully synthesized by a hydrosilylation reaction in the presence of Karstedt catalyst. The structural analysis of the surfactant was done by 1H-NMR, 13C-NMR, 29Si-NMR and FT-IR analysis. In addition the thermal stability of TS-EO12 was studied by the thermogravimetric measurements. On the one hand the surface properties of TS-EO12 at the water-air interface were investigated by surfactant aqueous solutions surface tension measurements carried out at 293 K, 303 K and 313 K, and on the other the aggregation properties were analyzed based on the solubilization properties of TS-EO12 aggregates at different temperatures. On the basis of the obtained thermodynamic parameters of adsorption and micellization of studied surfactant the temperature impact on its surface and volume properties were deduced. It was proved that the tendency of the studied surfactant molecules to adsorb at the water-air interface and to form micelles weakens with decreasing temperature. It was also concluded that the structure of the adsorption layer changes with temperature. Optical microscopy measurements were used for the TS-EO12 micelle morphology determination.
Collapse
|