1
|
Pu L, Luo G, Zhu M, Shen X, Wei W, Li S. A Trilaminar-Thermosensitive Hydrogel Catalytic Reactor Capable of Single/Tandem Catalytic Switchable Ability. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe present endeavor is to develop a highly-intelligent catalytic reactor prototype which is able to autonomously adapt to the environment and provides an in-situ double-shift catalytic ability. By seeking inspiration from nature, this objective is achieved by developing a self-adaptive hydrogel catalytic reactor which held a catalytic trilaminar structure capable of reverse thermosensitive properties. With increasing temperatures, the catalytic tri-layers of this catalytic reactor would function in a sequential way (i.e., one negative temperature response layer, one support layer and one positive temperature response layer) and as a result, led to the single-tandem double-shift catalytic ability. This catalytic reactor individually presented single/tandem catalytic process at relatively low temperatures or high temperatures through the cooperative work of the three layers. In this way, this catalytic reactor showed the single-tandem controllable catalytic ability. The novel protocol not only provides a new solution to complicated catalytic processes but also inspires the further application of smart polymers in a broader spectrum of areas.
Collapse
|
2
|
Self-adaptive Polymer Reactor Made of Flytrap-Inspired Catalytic Bi-layers, Capable of Single-Tandem-Single Triple-Shift Catalytic Ability. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
“Living” Imprinted-Polymer Reactor Containing Sea Cucumber-Inspired Dynamic Domains for Evoking Selectivity-Online/Offline Catalytic Ability. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Pu L, Zhu M, Shen X, Wu S, Wei W, Li S. Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Nature-inspired polymer catalyst for formulating on/off-selective catalytic ability, by virtue of recognition/misrecognition-alterable scaffolds. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|