1
|
Widhalm G, Aigner P, Gruber B, Moscato F, Moayedifar R, Schaefer AK, Dimitrov K, Zimpfer D, Riebandt J, Schlöglhofer T. Preoperative anatomical landmarks and longitudinal HeartMate 3 pump position in X-rays: Relevance for adverse events. Artif Organs 2024; 48:1502-1512. [PMID: 39105573 DOI: 10.1111/aor.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Left ventricular assist device (LVAD) malposition has been linked to hemocompatibility-related adverse events (HRAEs). This study aimed to identify preoperative anatomical landmarks and postoperative pump position, associated with HRAEs during LVAD support. METHODS Pre- and postoperative chest X-ray measures (≤14 days pre-implantation, first postoperative standing, 6, 12, 18, and 24 months post-implantation) were analyzed for their association with HRAEs over 24 months in 33 HeartMate 3 (HM3) patients (15.2% female, age 66 (9.5) years). RESULTS HM3 patients with any HRAE showed significantly lower preoperative distances between left ventricle and thoracic outline (dLVT) (25.3 ± 10.2 mm vs. 40.3 ± 15.5 mm, p = 0.004). A ROC-derived cutoff dLVT ≤ 29.2 mm provided 85.7% sensitivity and 72.2% specificity predicting any HRAE during HM3 support (76.2% (>29.2 mm) vs. 16.7% (≤29.2 mm) freedom from HRAE, p < 0.001) and significant differences in cardiothoracic ratio (0.58 ± 0.04 vs. 0.62 ± 0.04, p = 0.045). Postoperative X-rays indicated lower pump depths in patients with ischemic strokes (9.1 ± 16.2 mm vs. 38.0 ± 18.5 mm, p = 0.007), reduced freedom from any neurological event (pump depth ≤ 28.7 mm: 45.5% vs. 94.1%, p = 0.004), and a significant correlation between pump depth and inflow cannula angle (r = 0.66, p < 0.001). Longitudinal changes were observed in heart-pump width (F(4,60) = 5.61, p < 0.001). CONCLUSION Preoperative X-ray markers are associated with postoperative HRAE occurrence. Applying this knowledge in clinical practice may enhance risk stratification, guide therapy optimization, and improve HM3 recipient management.
Collapse
Affiliation(s)
- Gregor Widhalm
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Gruber
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Roxana Moayedifar
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Kamen Dimitrov
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
2
|
Hollis IB, Jennings DL, Krim S, Ton VK, Ducharme A, Cowger J, Looby M, Eulert-Green JJ, Bansal N, Horn E, Byku M, Katz J, Michaud CJ, Rajapreyar I, Campbell P, Vale C, Cosgrove R, Hernandez-Montfort J, Otero J, Ingemi A, Raj S, Weeks P, Agarwal R, Martinez ES, Tops LF, Ahmed MM, Kiskaddon A, Kremer J, Keebler M, Ratnagiri RK. An ISHLT consensus statement on strategies to prevent and manage hemocompatibility related adverse events in patients with a durable, continuous-flow ventricular assist device. J Heart Lung Transplant 2024; 43:1199-1234. [PMID: 38878021 DOI: 10.1016/j.healun.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/15/2024] Open
Abstract
Life expectancy of patients with a durable, continuous-flow left ventricular assist device (CF-LVAD) continues to increase. Despite significant improvements in the delivery of care for patients with these devices, hemocompatability-related adverse events (HRAEs) are still a concern and contribute to significant morbility and mortality when they occur. As such, dissemination of current best evidence and practices is of critical importance. This ISHLT Consensus Statement is a summative assessment of the current literature on prevention and management of HRAEs through optimal management of oral anticoagulant and antiplatelet medications, parenteral anticoagulant medications, management of patients at high risk for HRAEs and those experiencing thrombotic or bleeding events, and device management outside of antithrombotic medications. This document is intended to assist clinicians caring for patients with a CF-LVAD provide the best care possible with respect to prevention and management of these events.
Collapse
Affiliation(s)
- Ian B Hollis
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina; University of North Carolina Medical Center, Chapel Hill, North Carolina.
| | - Douglas L Jennings
- New York Presbyterian Columbia Irving Medical Center/Long Island University College of Pharmacy, New York, New York
| | - Selim Krim
- John Ochsner Heart and Vascular Institute, New Orleans, Louisiana
| | - Van-Khue Ton
- Massachusetts General Hospital, Boston, Massachusetts
| | - Anique Ducharme
- Montreal Heart Institute/Université de Montréal, Montreal, Quebec, Canada
| | | | - Mary Looby
- Inova Fairfax Medical Campus, Falls Church, Virginia
| | | | - Neha Bansal
- Mount Sinai Kravis Children's Hospital, New York, New York
| | - Ed Horn
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mirnela Byku
- University of North Carolina Medical Center, Chapel Hill, North Carolina
| | - Jason Katz
- Division of Cardiology, NYU Grossman School of Medicine & Bellevue Hospital, New York, New York
| | | | | | | | - Cassandra Vale
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Richard Cosgrove
- Cornerstone Specialty Hospital/University of Arizona College of Pharmacy, Tucson, Arizona
| | | | - Jessica Otero
- AdventHealth Littleton Hospital, Littleton, Colorado
| | | | | | - Phillip Weeks
- Memorial Hermann-Texas Medical Center, Houston, Texas
| | - Richa Agarwal
- Duke University Medical Center, Durham, North Carolina
| | | | - Laurens F Tops
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Amy Kiskaddon
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mary Keebler
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
3
|
Katapadi A, Umland M, Khandheria BK. Update on the Practical Role of Echocardiography in Selection, Implantation, and Management of Patients Requiring Left Ventricular Assist Device Therapy. Curr Cardiol Rep 2022; 24:1587-1597. [PMID: 35984555 DOI: 10.1007/s11886-022-01771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Echocardiography is a valuable tool for management of patients with a left ventricular assist device (LVAD). We present an updated review on the practical applications of the role of echocardiography for pre- and postoperative evaluation of patients selected. RECENT FINDINGS The LVAD is a temporary or permanent option for patients with advanced heart failure who are unresponsive to other therapy. Use of the device has its own risks, and implantation remains a complex procedure. Transthoracic and transesophageal echocardiography are useful tools for patient evaluation and monitoring both peri- and postoperatively, as we previously presented. Assessment of left and right ventricular function, complications such as thrombus formation or intracardiac shunting, and valvular disease are all important in this assessment. This also aids in predicting postoperative complications. Placement of the device is confirmed intraoperatively, and subsequent ramp studies are used to determine optimal device settings. Right ventricular (RV) failure is the most common postoperative complication and preoperative evaluation of its function is crucial. Studies suggest that tricuspid annular plane systolic excursion, RV fractional area change, and RV global longitudinal strain are strong predictors of RV failure; LV ejection fraction, size, and end-diastolic diameter are also important markers. Aortic regurgitation and mitral stenosis must always be corrected prior to LVAD placement. However, direct visualization before and after implantation, especially to rule out potential contraindications such as thrombi, cannot be overemphasized. Ramp studies remain an integral part of device optimization and may result in greater myocardial recovery than previously realized.
Collapse
Affiliation(s)
- Aashish Katapadi
- Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA
| | - Matt Umland
- Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA
| | - Bijoy K Khandheria
- Aurora Cardiovascular and Thoracic Services, Aurora Sinai/Aurora St. Luke's Medical Centers, Advocate Aurora Health, 2801 W. Kinnickinnic River Parkway, Ste. 880, Milwaukee, WI, 53215, USA.
- School of Medicine and Public Health, University of Wisconsin, Milwaukee, WI, 53215, USA.
| |
Collapse
|
4
|
Singh S, Takeda K, Kurlansky P. Left ventricular assist device positioning: a science that is far from exact. Eur J Cardiothorac Surg 2022; 62:6692711. [PMID: 36066441 DOI: 10.1093/ejcts/ezac445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sameer Singh
- Division of Cardiac Surgery, Columbia University, New York, NY
| | - Koji Takeda
- Division of Cardiac Surgery, Columbia University, New York, NY
| | - Paul Kurlansky
- Division of Cardiac Surgery, Columbia University, New York, NY.,Center for Innovation and Outcomes Research, Columbia University, New York, NY
| |
Collapse
|
5
|
Left ventricular assist device and pump thrombosis: the importance of the inflow cannula position. Int J Cardiovasc Imaging 2022; 38:2771-2779. [DOI: 10.1007/s10554-022-02683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022]
Abstract
AbstractPump thrombosis is a devastating complication after left ventricular assist device implantation. This study aims to elucidate the relation between left ventricular assist device implantation angle and risk of pump thrombosis. Between November 2010 and March 2020, 53 left ventricular assist device-patients underwent a computed tomography scan. Using a 3-dimensional multiplanar reformation the left ventricular axis was reconstructed to measure the implantation angle of the inflow cannula. All patients were retrospectively analyzed for the occurrence of pump thrombosis. In 10 (91%) patients with a pump thrombosis, the implantation angle was towards the lateral wall of the left ventricle. In only 20 patients (49%) of the patients without a pump thrombosis the inflow cannula pointed towards the lateral wall of the left ventricle. The mean angle in patients with a pump thrombosis was 10.1 ± 11.9 degrees towards the lateral wall of the left ventricle compared to 4.1 ± 19.9 degrees towards the septum in non-pump thrombosis patients (P = 0.005). There was a trend towards a significant difference in time to first pump thrombosis between patients with a lateral or septal deviated left ventricular assist device (hazard ratio of 0.15, P = 0.07). This study demonstrates that left ventricular assist device implantation angle is associated with pump thrombosis. Almost all patients in whom a pump thrombosis occurred during follow-up had a left ventricular assist device implanted with the inflow-cannula pointing towards the lateral wall of the left ventricle.
Collapse
|
6
|
Schlöglhofer T, Aigner P, Migas M, Beitzke D, Dimitrov K, Wittmann F, Riebandt J, Granegger M, Wiedemann D, Laufer G, Moscato F, Schima H, Zimpfer D. Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist devices. Artif Organs 2022; 46:1149-1157. [PMID: 34978722 PMCID: PMC9305857 DOI: 10.1111/aor.14165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023]
Abstract
Background A relation between the left ventricular assist device inflow cannula (IC) malposition and pump thrombus has been reported. This study aimed to investigate if the pump position, derived from chest X‐rays in HeartMate 3 (HM3) patients, correlates with neurological dysfunction (ND), ischemic stroke (IS), hemorrhagic stroke (HS) and survival. Methods This analysis was performed on routinely acquired X‐rays of 42 patients implanted with a HM3 between 2014 and 2017. Device position was quantified in patients with and without ND from frontal and lateral X‐rays characterizing the IC and pump in relation to spine, diaphragm or horizontal line. The primary end‐point was freedom from stroke and survival one‐year after HM3 implantation stratified by pump position. Results The analysis of X‐rays, 33.5 (41.0) days postoperative, revealed a significant smaller IC angle of HM3 patients with ND versus no ND (0.1° ± 14.0° vs. 12.9° ± 10.1°, p = 0.005). Additionally, the IC angle in the frontal view, IS: 4.1 (20.9)° versus no IS: 13.8 (7.5)°, p = 0.004 was significantly smaller for HM3 patients with IS. Using receiver operating characteristics derived cut‐off, IC angle <10° provided 75% sensitivity and 100% specificity (C‐statistic = 0.85) for predicting IS. Stratified by IC angle, freedom from IS at 12 months was 100% (>10°) and 60% (<10°) respectively (p = 0.002). No significant differences were found in any end‐point between patients with and without HS. One‐year survival was significantly higher in patients with IC angle >10° versus <10° (100% vs. 71.8%, p = 0.012). Conclusions IC malposition derived from standard chest X‐rays serves as a risk factor for ND, IS and worse survival in HM3 patients.
Collapse
Affiliation(s)
- Thomas Schlöglhofer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Philipp Aigner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marcel Migas
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kamen Dimitrov
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Wittmann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Riebandt
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Granegger
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Wiedemann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Günther Laufer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Heinrich Schima
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
7
|
Mehra MR, Crandall DL, Gustafsson F, Jorde UP, Katz JN, Netuka I, Uriel N, Connors JM, Sood P, Heatley G, Pagani FD. Aspirin and left ventricular assist devices: rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial. Eur J Heart Fail 2021; 23:1226-1237. [PMID: 34142415 PMCID: PMC8361946 DOI: 10.1002/ejhf.2275] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 11/07/2022] Open
Abstract
AIMS Over decades, left ventricular assist device (LVAD) technology has transitioned from less durable bulky pumps to smaller continuous-flow pumps which have substantially improved long-term outcomes and quality of life. Contemporary LVAD therapy is beleaguered by haemocompatibility-related adverse events including thrombosis, stroke and bleeding. A fully magnetically levitated pump, the HeartMate 3 (HM3, Abbott, USA) LVAD, has been shown to be superior to the older HeartMate II (HMII, Abbott, USA) pump by improving haemocompatibility. Experience with the HM3 LVAD suggests near elimination of de-novo pump thrombosis, a marked reduction in stroke rates, and only a modest decrease in bleeding complications. Since the advent of continuous-flow LVAD therapy, patients have been prescribed a combination of aspirin and anticoagulation therapy on the presumption that platelet activation and perturbations to the haemostatic axis determine their necessity. Observational studies in patients implanted with the HM3 LVAD who suffer bleeding have suggested a signal of reduced subsequent bleeding events with withdrawal of aspirin. The notion of whether antiplatelet therapy can be avoided in an effort to reduce bleeding complications has now been advanced. METHODS To evaluate this hypothesis and its clinical benefits, the Antiplatelet Removal and Hemocompatibility Events with the HeartMate 3 Pump (ARIES HM3) has been introduced as the first-ever international prospective, randomized, double-blind and placebo-controlled, non-inferiority trial in a patient population implanted with a LVAD. CONCLUSION This paper reviews the biological and clinical role of aspirin (100 mg) with LVADs and discusses the rationale and design of the ARIES HM3 trial.
Collapse
Affiliation(s)
- Mandeep R Mehra
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Ulrich P Jorde
- Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Bronx, NY, USA
| | - Jason N Katz
- Division of Cardiology, Duke University, Durham, NC, USA
| | - Ivan Netuka
- Department of Cardiovascular Surgery, IKEM, Prague, Czech Republic
| | - Nir Uriel
- Heart Failure, Heart Transplant & Mechanical Circulatory Support, Columbia University Medical Center, New York, NY, USA
| | - Jean M Connors
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Poornima Sood
- Clinical Affairs Heart Failure, Abbott, Chicago, IL, USA
| | | | - Francis D Pagani
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility. ASAIO J 2021; 67:724-732. [DOI: 10.1097/mat.0000000000001341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Dual SA, Anthamatten L, Shah P, Meboldt M, Schmid Daners M. Ultrasound-based prediction of interventricular septum positioning during left ventricular support-an experimental study. J Cardiovasc Transl Res 2020; 13:1055-1064. [PMID: 32671647 DOI: 10.1007/s12265-020-10034-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/19/2020] [Indexed: 10/23/2022]
Abstract
The implantation of left ventricular assist devices (LVADs) is often complicated by arrhythmias and right ventricular failure (RVF). Today, the pump speed is titrated to optimize device support using single observations of interventricular septum (IVS) positioning with echocardiographic ultrasound (US). The study demonstrates the applicability of three integrated US transducers in the LVAD cannula to monitor IVS positioning continuously and robustly in real time. In vitro, the predictor of the IVS shift shows an overall prediction error for all volume states of less than 20% and provides a continuous assessment for 99% of cases in four differently sized heart phantoms. The prediction of IVS shift depending on the cannula position is robust for azimuthal and polar deviations of ± 20° and ± 8°, respectively. This intracardiac US concept results in a viable predictor for IVS positioning and represents a promising approach to continuously monitor the IVS and ventricular loading in LVAD patients. Graphical abstract.
Collapse
Affiliation(s)
- Seraina Anne Dual
- Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
- Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Lucien Anthamatten
- Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
| | - Palak Shah
- Department of Heart Failure & Transplantation, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Mirko Meboldt
- Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland
| | - Marianne Schmid Daners
- Product Development Group Zurich, ETH Zurich, CLA G 21.1, Tannenstrasse 3, 8092, Zurich, Switzerland.
| |
Collapse
|
10
|
Ather N, Roberts WC. Location of the Cannula of the Left Ventricular Assist Device in Explanted Hearts After Orthotopic Heart Transplantation. Am J Cardiol 2020; 134:91-98. [PMID: 32943194 DOI: 10.1016/j.amjcard.2020.07.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Many patients having orthotopic heart transplantation (OHT) have previously had a left ventricular assist device (LVAD). Such a scenario allows the study of the position of the LVAD cannula in the explanted heart. We studied the explanted hearts in 105 patients who had had a LVAD inserted earlier and later underwent OHT at Baylor University Medical Center from January 2005 to September 2019, and compared the patients in whom the margins of the LVAD cannula contacted the mural endocardium with those in whom it did not. The margins of the orifice of the LVAD cannula contacted the left ventricular (LV) mural endocardium in 38 (36%) patients (considered potentially hazardous insertion) whereas in 67 (64%) patients there was no contact (considered "ideal" insertion). Comparison of the patients with ideal cannular insertion to those with potentially hazardous insertion disclosed insignificant differences in age at LVAD insertion or OHT; gender; interval between the LVAD insertion and OHT; body mass index; underlying cardiac disease; whether or not the heart floated in a container of formaldehyde, and the type of LVAD inserted. The margins of the LVAD cannula contacted the LV mural endocardium significantly more in patients with smaller mean heart weights than those with larger mean heart weights. In conclusion, of the 105 patients studied, the cannula of the LVAD resided in the LV cavity at an angle that allowed the margins of the orifice of the cannula to contact the mural endocardium in 38 (36%), a situation that at least potentially could cause partial obstruction of its orifice. Nevertheless, comparison of the 38 patients with nonideal cannular insertion to the 67 with ideal cannular insertion disclosed only 1 significant difference between the 2 groups.
Collapse
|
11
|
Ghodrati M, Maurer A, Schlöglhofer T, Khienwad T, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P. The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artif Organs 2020; 44:939-946. [PMID: 32302423 PMCID: PMC7496759 DOI: 10.1111/aor.13705] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
Abstract
The use of left ventricular assist devices (LVADs) as a treatment method for heart failure patients has been steadily increasing; however, pathological studies showed presence of thrombi around the HeartWare ventricular assist device inflow cannula (IC) in more than 95% of patients after device explantation. Flow fields around the IC might trigger thrombus formation and require further investigation. In this study flow dynamics parameters were evaluated for different patient geometries using computational fluid dynamics (CFD) simulations. Left ventricular (LV) models of two LVAD patients were obtained from CT scans. The LV volumes of Patient 1 (P1) and Patient 2 (P2) were 264 and 114 cm3 with an IC angle of 20° and 9° from the mitral-IC tip axis at the coronal plane. The IC insertion site at the apex was central for P1, whereas it was lateral for P2. Transient CFD simulations were performed over 9 cardiac cycles. The wedge area was defined from the cannula tip to the wall of the LV apex. Mean velocity magnitude and blood stagnation region (volume with mean velocity <5 mm/s) as well as the wall shear stress (WSS) at the IC surface were calculated. Cardiac support resulted in a flow mainly crossing the ventricle from the mitral valve to the LVAD cannula for P2, while the main inflow jet deviated toward the septal wall in P1. Lower WSS at the IC surface and consequently larger stagnation volumes were observed for P2 (P1: 0.17, P2: 0.77 cm3 ). Flow fields around an LVAD cannula can be influenced by many parameters such as LV size, IC angle, and implantation site. Careful consideration of influencing parameters is essential to get reliable evaluations of the apical flow field and its connection to apical thrombus formation. Higher blood washout and lower stagnation were observed for a central implantation of the IC at the apex.
Collapse
Affiliation(s)
- Mojgan Ghodrati
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Alexander Maurer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Thananya Khienwad
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Daniel Zimpfer
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Dietrich Beitzke
- Department of Biomedical Imaging and Image Guided TherapyMedical University of ViennaViennaAustria
| | - Francesco Zonta
- Institute of Fluid Dynamics and Heat TransferTechnical University of ViennaViennaAustria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
- Department for Cardiac SurgeryMedical University of ViennaViennaAustria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Cardiovascular ResearchViennaAustria
| |
Collapse
|
12
|
Kimura Y, Okumura T, Kazama S, Shibata N, Oishi H, Arao Y, Kuwayama T, Kato H, Yamaguchi S, Hiraiwa H, Kondo T, Morimoto R, Mutsuga M, Fujimoto K, Usui A, Murohara T. Predictors of residual mitral regurgitation after left ventricular assist device implantation. Int J Artif Organs 2020; 44:101-109. [PMID: 32677853 DOI: 10.1177/0391398820942526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Patients with advanced heart failure often have functional mitral regurgitation. Left ventricular assist device implantation improves functional mitral regurgitation through left ventricular unloading. However, residual mitral regurgitation after left ventricular assist device implantation leads to adverse outcomes, and whether patients need concomitant mitral valve surgery is not fully elucidated. Therefore, this study aimed to elucidate the predictors of residual mitral regurgitation and to describe the temporal changes in residual mitral regurgitation. We retrospectively enrolled 15 patients with implantable continuous-flow left ventricular assist device, who had significant mitral regurgitation on echocardiography before left ventricular assist device implantation. Three patients had residual mitral regurgitation (mitral regurgitation color jet area/left atrial area >0.2) 1 month after left ventricular assist device implantation. We investigated factors associated with residual mitral regurgitation and compared patients with or without residual mitral regurgitation. On univariate analysis, mitral valve tethering area and mitral regurgitation vena contracta before left ventricular assist device implantation were significantly associated with residual mitral regurgitation (odds ratio, 1.03; p = 0.036 and odds ratio, 10.45; p = 0.0087). One month after left ventricular assist device implantation, the mean pulmonary capillary wedge pressure and pulmonary artery pressure were higher in patients with residual mitral regurgitation (pulmonary capillary wedge pressure: 11.3 ± 3.5 vs 6.4 ± 3.4 mmHg, p = 0.029 and pulmonary artery pressure: 21.3 ± 4.0 vs 15.9 ± 3.3 mmHg, p = 0.023). However, the mitral regurgitation grading and hemodynamics were not significantly different 6 months after left ventricular assist device implantation. The hospitalization-free survival was not significantly different between the two groups. Mitral valve tethering area and mitral regurgitation vena contracta were predictors of residual mitral regurgitation. Residual mitral regurgitation improved until 6 months after left ventricular assist device implantation and might not affect the prognosis.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihito Arao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuro Fujimoto
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|