Hackeng WM, Dreijerink KMA, de Leng WWJ, Morsink FHM, Valk GD, Vriens MR, Offerhaus GJA, Geisenberger C, Brosens LAA. Genome Methylation Accurately Predicts Neuroendocrine Tumor Origin: An Online Tool.
Clin Cancer Res 2020;
27:1341-1350. [PMID:
33355250 DOI:
10.1158/1078-0432.ccr-20-3281]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE
The primary origin of neuroendocrine tumor metastases can be difficult to determine by histopathology alone, but is critical for therapeutic decision making. DNA methylation-based profiling is now routinely used in the diagnostic workup of brain tumors. This has been enabled by the availability of cost-efficient array-based platforms. We have extended these efforts to augment histopathologic diagnosis in neuroendocrine tumors.
EXPERIMENTAL DESIGN
Methylation data was compiled for 69 small intestinal, pulmonary, and pancreatic neuroendocrine tumors. These data were used to build a ridge regression calibrated random forest classification algorithm (neuroendocrine neoplasm identifier, NEN-ID). The model was validated during 3 × 3 nested cross-validation and tested in a local and an external cohort (n = 198 cases).
RESULTS
NEN-ID predicted the origin of tumor samples with high accuracy (>95%). In addition, the diagnostic approach was determined to be robust across a range of possible confounding experimental parameters, such as tumor purity and array quality. A software infrastructure and online user interface were built to make the model available to the scientific community.
CONCLUSIONS
This DNA methylation-based prediction model can be used in the workup for patients with neuroendocrine tumors of unknown primary. To facilitate validation and clinical implementation, we provide a user-friendly, publicly available web-based version of NEN-ID.
Collapse