1
|
Mitea G, Schröder V, Iancu IM, Mireșan H, Iancu V, Bucur LA, Badea FC. Molecular Targets of Plant-Derived Bioactive Compounds in Oral Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:3612. [PMID: 39518052 PMCID: PMC11545343 DOI: 10.3390/cancers16213612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND With a significant increase in both incidence and mortality, oral cancer-particularly oral squamous cell carcinoma (OSCC)-is one of the main causes of death in developing countries. Even though there is evidence of advances in surgery, chemotherapy, and radiotherapy, the overall survival rate for patients with OSCC has improved, but by a small percentage. This may be due, on the one hand, to the fact that the disease is diagnosed when it is at a too-advanced stage, when metastases are already present. METHODS This review explores the therapeutic potential of natural herbal products and their use as adjuvant therapies in the treatment of oral cancer from online sources in databases (PubMed, Web of Science, Google Scholar, Research Gate, Scopus, Elsevier). RESULTS Even if classic therapies are known to be effective, they often produce many serious side effects and can create resistance. Certain natural plant compounds may offer a complementary approach by inducing apoptosis, suppressing tumor growth, and improving chemotherapy effectiveness. The integration of these compounds with conventional treatments to obtain remarkable synergistic effects represents a major point of interest to many authors. This review highlights the study of molecular mechanisms and their efficiency in in vitro and in vivo models, as well as the strategic ways in which drugs can be administered to optimize their use in real contexts. CONCLUSIONS This review may have a significant impact on the oncology community, creating new inspirations for the development of more effective, safer cancer therapies with less toxic potential.
Collapse
Affiliation(s)
- Gabriela Mitea
- Department of Pharmacology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania
| | - Irina Mihaela Iancu
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Horațiu Mireșan
- Department of Toxicology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Valeriu Iancu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Laura Adriana Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 900470 Constanta, Romania;
| | - Florin Ciprian Badea
- Department of Dental Medicine, Faculty of Dental Medicine, Ovidius University of Constanta, 900684 Constanta, Romania;
| |
Collapse
|
2
|
Chandan P, Dev A, Ezhilarasan D, Shree Harini K. Boldine Treatment Induces Cytotoxicity in Human Colorectal Carcinoma and Osteosarcoma Cells. Cureus 2023; 15:e48126. [PMID: 38046745 PMCID: PMC10693387 DOI: 10.7759/cureus.48126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Cancer continues to be a significant health issue worldwide, with colorectal cancer (CRC) standing out as one of the most prevalent forms of cancer on a global scale. The lifetime risk of developing CRC is about one in 23 (4.3%) for men and one in 25 (4.0%) for women. Moreover, children and adolescents are frequently reported with osteosarcoma with a low five-year survival rate (69% and 67%, respectively). Aim The aim of the study was to analyze the cytotoxic effects of boldine against human CRC (HCT-116) and osteosarcoma cell lines (Saos-2). Materials and methods HCT-116 and Saos-2 cell lines were subjected to different concentrations of boldine treatment (5, 10, 20, 30, 40, and 50 μg/mL) and (10, 20, 40, 60, and 80 µg/mL), respectively, for 24 hours. The cytotoxicity was analyzed by MTT assay, AO/EB staining, DCFH-DA assay, and scratch assay. Results The MTT assay, microscopic analysis, and staining showed that boldine had dose-dependent cytotoxic effects against HCT-116 and Saos-2 cell lines by inhibiting their proliferation, viability, and migration, and inducing ROS-mediated apoptosis. Conclusion The study concluded that boldine had a concentration-dependent cytotoxic effect on human CRC and osteosarcoma cell lines.
Collapse
Affiliation(s)
- Panigrahi Chandan
- Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Arora Dev
- Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Devaraj Ezhilarasan
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Karthik Shree Harini
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
3
|
Li R, Zheng C, Shiu PHT, Rangsinth P, Wang W, Kwan YW, Wong ESW, Zhang Y, Li J, Leung GPH. Garcinone E triggers apoptosis and cell cycle arrest in human colorectal cancer cells by mediating a reactive oxygen species–dependent JNK signaling pathway. Biomed Pharmacother 2023; 162:114617. [PMID: 37001180 DOI: 10.1016/j.biopha.2023.114617] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Despite various therapeutic approaches, colorectal cancer is among the most fatal diseases globally. Hence, developing novel and more effective methods for colorectal cancer treatment is essential. Recently, reactive oxygen species (ROS)/JNK signaling pathway has been proposed as the potential target for the anticancer drug discovery. The present study investigated the anticancer effects of the bioactive xanthone garcinone E (GAR E) in mangosteen and explored its underlying mechanism of action. HT-29 and Caco-2 cancer cells were used as in vitro models to study the anticancer effect of GAR E. The findings demonstrated that GAR E inhibited colony formation and wound healing, whereas triggered the production of ROS, which induced mitochondrial dysfunction and apoptosis, causing cell cycle arrest at the Sub G1 phase. Additionally, GAR E treatment elevated the ratio of Bax/Bcl-2 and activated PARP, caspases 3 and 9, and JNK1/2. These GAR E-induced cytotoxic activities and expression of signaling proteins were reversed by the antioxidant N-acetyl-L-cysteine and JNK inhibitor SP600125, indicating the involvement of ROS/JNK signaling pathways. In vivo experiments using an HT-29 xenograft nude mouse model also demonstrated the antitumor effect of GAR E. In conclusion, our findings showed that GAR E might be potentially effective in treating colorectal cancer and provided insights into the development of xanthones as novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wen Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Emily Sze-Wan Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Yanbo Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Shams A, Ahmed A, Khan A, Khawaja S, Rehman NU, Qazi AS, Khan A, Bawazeer S, Ali SA, Al-Harrasi A. Naturally Isolated Sesquiterpene Lactone and Hydroxyanthraquinone Induce Apoptosis in Oral Squamous Cell Carcinoma Cell Line. Cancers (Basel) 2023; 15:cancers15020557. [PMID: 36672505 PMCID: PMC9856832 DOI: 10.3390/cancers15020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide, especially in Asian countries. The emergence of its drug resistance and its side effects demands alternatives, to improve prognosis. Since the majority of cancer drugs are derived from natural sources, it provides a window to look for more biocompatible alternatives. In this study, two natural compounds, costunolide (CE) and aloe emodin (AE), were isolated from the stem of Lycium shawii. The compounds were examined for their anticancer and apoptotic potentials against OSCC (CAL 27) cells, using an in vitro analysis, such as a MTT assay, scratch assay, gene, and protein expressions. Both compounds, CE and AE, were found to be cytotoxic against the cancer cells with an IC50 value of 32 and 38 µM, respectively. Moreover, the compounds were found to be non-toxic against normal NIH-3T3 cells and comparable with the standard drug i.e., 5-fluorouracil (IC50 = 97.76 µM). These compounds were active against normal cells at higher concentrations. Nuclear staining displayed the presence of apoptosis-associated morphological changes, i.e., karyopyknosis and karyorrhexis in the treated cancer cells. Flow cytometry results further confirmed that these compounds induce apoptosis rather than necrosis, as the majority of the cells were found in the late apoptotic phase. Gene and protein expression analyses showed an increased expression of apoptotic genes, i.e., BAK, caspase 3, 6, and 9. Moreover, the compounds significantly downregulated the expression of the anti-apoptotic (BCL-2 L1), metastatic (MMP-2), and pro-inflammatory (COX-2) genes. Both compounds have shown promising anticancer, apoptotic, and anti-migratory activities against the OSCC cell line (i.e., CAL-27). However, further in vivo studies are required to explore these compounds as anticancer agents.
Collapse
Affiliation(s)
- Afshan Shams
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Shariqa Khawaja
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
| | - Asma Saleem Qazi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Adnan Khan
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Sami Bawazeer
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (S.A.A.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-Al-Mouz, P.O. Box 33, Nizwa 616, Oman
- Correspondence: (S.A.A.); (A.A.-H.)
| |
Collapse
|
5
|
Mohamed GA, Ibrahim SRM, Hareeri RH, Binmahfouz LS, Bagher AM, Abdallah HM, Elsaed WM, El-Agamy DS. Garcinone E Mitigates Oxidative Inflammatory Response and Protects against Experimental Autoimmune Hepatitis via Modulation of Nrf2/HO-1, NF-κB and TNF-α/JNK Axis. Nutrients 2022; 15:nu15010016. [PMID: 36615674 PMCID: PMC9824319 DOI: 10.3390/nu15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Garcinia mangostana L. (Clusiaceae), a popular tropical fruit for its juiciness and sweetness, is an opulent fountain of prenylated and oxygenated xanthones with a vast array of bio-activities. Garcinone E (GE), a xanthone derivative reported from G. mangostana, possesses cytotoxic and aromatase inhibitory activities. The present research endeavors to investigate the hepato-protection efficaciousness of GE on concanavalin-A (Con-A)-instigated hepatitis. Results showed that GE pretreating noticeably diminishes both the serum indices (transaminases, ALP, LDH, and γ-GT) and histopathological lesions of the liver. It counteracted neutrophil and CD4+ infiltration into the liver. GE furthered the Nrf2 genetic expression and its antioxidants' cascade, which resulted in amelioration of Con-A-caused oxidative stress (OS), lipid per-oxidative markers (4-HNE, MDA, PC) reduction, and intensified antioxidants (TAC, SOD, GSH) in the hepatic tissue. Additionally, GE prohibited NF-ĸB (nuclear factor kappa-B) activation and lessened the genetics and levels of downstream cytokines (IL1β and IL6). Moreover, the TNF-α/JNK axis was repressed in GE-treated mice, which was accompanied by attenuation of Con-A-induced apoptosis. These findings demonstrated the protective potential of GE in Con-A-induced hepatitis which may be associated with Nrf2/HO-1 signaling activation and OS suppression, as well as modulation of the NF-κB and TNF-α/JNK/apoptosis signaling pathway. These results suggest the potential use of GE as a novel hepato-protective agent against autoimmune hepatitis.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-597636182
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Garcinia spp: Products and by-products with potential pharmacological application in cancer. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Nguyen TTH, Qu Z, Nguyen VT, Nguyen TT, Le TTA, Chen S, Ninh ST. Natural Prenylated Xanthones as Potential Inhibitors of PI3k/Akt/mTOR Pathway in Triple Negative Breast Cancer Cells. PLANTA MEDICA 2022; 88:1141-1151. [PMID: 34963183 DOI: 10.1055/a-1728-5166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three prenylated xanthones, garcinone E (1: ), bannaxanthone D (2: ) and bannanxanthone E (3: ) were isolated from the leaves of Garcinia mckeaniana Graib. Their structures were elucidated by spectral methods and compared with literature data. To evaluate their anti-proliferative effects in tumor cells, firstly, cisplatin was used as a positive control and the effects of compound 1: - 3: were determined by performing MTT assay in MDA-MB-231, CNE-2 and A549 cancer cells. The results showed compound 1: - 3: exhibited stronger inhibitory effect than cisplatin in MDA-MB-231. Further effects of compound 1: - 3: in TNBC MDA-MB-231 and MDA-MB-468 cells were examined by performing cell cycle and apoptosis assays. The results indicated that compound 1: - 3: had ability to arrest cell cycle at G2/M phase and induce apoptosis. Furthermore, compound 2: significantly down-regulated PI3K, Akt and mTOR levels in both total proteins and phosphorylated form, which is its potential anti-cancer mechanism. These findings indicated that those prenylated xanthones might serve as promising leading compounds for the development of anticancer drug for TNBC.
Collapse
Affiliation(s)
- Thi Thu Ha Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Zhao Qu
- Medical College of China Three Gorges University, Yichang, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| | - Van Tuyen Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thanh Tra Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Tu Anh Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Son The Ninh
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|